タグ「関数」の検索結果

211ページ目:全2213問中2101問~2110問を表示)
宮城教育大学 国立 宮城教育大学 2010年 第3問
関数$y=x^3-3x^2+3$について,次の問いに答えよ.

(1)この関数のグラフに点$(3,\ -1)$から接線を引く.このとき,すべての接点の座標を求めよ.
(2)(1)で求めた接点のうち,その$x$座標が最小のものを$\mathrm{A}$,最大のものを$\mathrm{B}$とする.2点$\mathrm{A},\ \mathrm{B}$を通る直線の方程式を求めよ.
(3)この関数のグラフ上の点を$\mathrm{P}(s,\ s^3-3s^2+3)$とする.ただし,$2-\sqrt{3}<s<2+\sqrt{3}$である.このとき,点$\mathrm{P}$と(2)で求めた直線との距離$d$を$s$で表し,$d$の最大値を求めよ.
宮城教育大学 国立 宮城教育大学 2010年 第4問
次の問いに答えよ.

(1)関数$\displaystyle y=\log_{\frac{1}{3}} \left( \frac{x}{3} \right) \cdot \log_{\frac{1}{3}}(3x)$を考える.

(i) $t=\log_{\frac{1}{3}}x$とおくとき,$y$を$t$を用いて表せ.
(ii) $\displaystyle \frac{1}{9} \leqq x \leqq 3$のとき,$y$の最大値と最小値を求めよ.

(2)$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$のとき,関数$y=2 \sin^2 x-\sin x \cos x+3 \cos^2 x$の最大値と最小値を求めよ.
宮城教育大学 国立 宮城教育大学 2010年 第4問
関数$\displaystyle f(x)=\frac{x+2}{x^2+4a}$を考える.ただし,$a$は$1 \leqq a<2$をみたす定数とする.導関数$f^\prime(x)$に対して,$f^\prime(x)=0$となる$x$のうち正のものを$\beta$とする.次の問いに答えよ.

(1)$x \geqq 0$における$f(x)$の増減を調べ,極値を求めよ.
(2)$f(x)=f(a)$をみたす$x$を求めよ.
(3)$\displaystyle a-1<\frac{2a}{2+a}$および$\beta<a$を示せ.
(4)$a-1 \leqq x \leqq a$において,$f(x)$の最小値が$\displaystyle \frac{4}{9}$であるとき,$f(x)$の最大値を求めよ.
宮城教育大学 国立 宮城教育大学 2010年 第5問
関数$\displaystyle f(x)=\int_\alpha^x (t-\alpha)\cos (x-t) \, dt$を考える.ただし,$\alpha$は定数とする.次の問いに答えよ.

(1)$x$を定数とみて,$u=x-t$とおく.置換積分法を用いて,
\[ \int_\alpha^x (t-\alpha)\cos (x-t) \, dt=\int_0^{x-\alpha}(x-\alpha-u)\cos u \, du \]
となることを示せ.
(2)導関数$f^\prime(x)$を求めよ.
(3)関数$f(x)$を求めよ.
(4)曲線$y=f(x) \ (\alpha \leqq x \leqq \alpha+2\pi)$と$x$軸で囲まれた部分を,$x$軸のまわりに$1$回転してできる立体の体積を求めよ.
京都教育大学 国立 京都教育大学 2010年 第6問
次の問に答えよ.

(1)次の定積分の値を計算せよ.
\[ \int_0^{\frac{1}{2}} \frac{1}{1-x^2} \, dx \]
(2)$0<x<\pi$とする.関数$\displaystyle y=\frac{1}{\sin x}$の極値を調べグラフの概形をかけ.
(3)$\displaystyle y=\frac{1}{\sin x}$が表す曲線と3直線$\displaystyle y=\frac{1}{2},\ x=\frac{\pi}{3},\ x=\frac{\pi}{2}$で囲まれた図形の面積を求めよ.
福岡教育大学 国立 福岡教育大学 2010年 第1問
次の問いに答えよ.

(1)円$x^2+y^2=1$と放物線$y=x^2+5$との共通の接線のうち,円と第$1$象限で接する接線の方程式を求めよ.
(2)$n \geqq 2$であるような自然数$n$に対して
\[ 1 \cdot 2 \cdot 3+2 \cdot 3 \cdot 4+\cdots +(n-1) \cdot n \cdot (n+1)=(1+2+3+\cdots +n)(2+3+\cdots +n) \]
が成り立つことを示せ.
(3)関数$\displaystyle f(x)=\frac{\cos x}{\sqrt{1+\cos^2 x}} \ \left( -\frac{\pi}{2} \leqq x \leqq \frac{3}{2}\pi \right)$の増減を調べ,最大値と最小値を求めよ.
山梨大学 国立 山梨大学 2010年 第5問
関数$f(x)$を$f(x)=\log (x+1)+\sin ax$と定義する.ただし,$x \geqq 0$であり,$a$は正の定数である.

(1)$f(e-1)=0$を満たす最も小さい$a$の値を求めよ.
(2)(1)で求めた$a$の値を使って,定積分$\displaystyle \int_0^{\frac{2(e-1)}{3}}f(x) \, dx$を求めよ.
(3)$\displaystyle a=\frac{2\pi}{e-1}$とするとき,方程式$f(x)=0$は$\displaystyle 0<x<\frac{3(e-1)}{4}$の範囲に解を持つことを証明せよ.
山梨大学 国立 山梨大学 2010年 第1問
次の問いに答えよ.

(1)第$n$項が次の式で表される数列の極限を求めよ.
\[ \frac{\sqrt{n}(\sqrt{n+1}-\sqrt{n+2})(5^{n+2}+2^{2n-1})}{5^n+2^{2n}} \]
(2)次の関数を微分せよ.$f(x)=\sqrt{\left( \displaystyle\frac{x-1}{x^2+3} \right)^3}$
(3)定積分$\displaystyle \int_0^{\frac{\pi}{2}} x \sin (2x-\frac{\pi}{4}) \, dx$を求めよ.
(4)定積分$\displaystyle \int_0^4 \frac{x}{\sqrt{2x+1}} \, dx$を求めよ.
山梨大学 国立 山梨大学 2010年 第2問
$\displaystyle f(x)=\cos x+\frac{1}{2}\sin 2x \ (0 \leqq x \leqq 2\pi)$とする.

(1)関数$f(x)$の最大値と最小値,および,それらを与える$x$を求めよ.
(2)曲線$y=f(x)$の変曲点は$4$個あることを示せ.
(3)$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$において,$2$つの曲線$y=f(x)$と$y=\cos x$で囲まれた図形の面積を求めよ.
山梨大学 国立 山梨大学 2010年 第1問
次の問いに答えよ.

(1)$2$つのベクトル$\overrightarrow{a}=(2,\ 1)$,$\overrightarrow{b}=(1,\ 3)$のなす角$\theta$を求めよ.
(2)放物線$y=-x^2+4x+8$と$x$軸とで囲まれた図形に内接し,$x$軸上に$2$つの頂点をもつ長方形の面積の最大値を求めよ.
(3)整数$5^{2010}$の桁数を求めよ.ただし,$\log_{10}2=0.3010$とする.
(4)関数$y=\sin x-\cos x+\sqrt{2} \ (0 \leqq x \leqq 2\pi)$の最大値と最小値を求めよ.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。