タグ「関数」の検索結果

207ページ目:全2213問中2061問~2070問を表示)
山形大学 国立 山形大学 2010年 第3問
$a,\ b,\ c$を実数とするとき,関数$f(x)=ax^2+bx+c$に対して,関数$F(x)$を$\displaystyle F(x)=\int_0^x (x+1-t)f(t) \, dt$により定める.次の問いに答えよ.

(1)$F^{\prime\prime}(x)=f(x)+f^{\prime}(x)$および$F^{\prime}(0)=f(0)$を示せ.
(2)$a=1,\ b=c=0$のとき,$F(x)$を求めよ.
(3)$F(x)=x^4+x^2+26x$となるように,$a,\ b,\ c$の値を定めよ.
防衛大学校 国立 防衛大学校 2010年 第2問
関数$\displaystyle f(x)=\frac{a(-3x^2+x+4)-7b(x-2)}{3x^3-7x^2-2x+8}$について,次の問に答えよ.ただし,$a,\ b$は0でない定数とする.

(1)$\displaystyle f(x)=\frac{A}{x-2}+\frac{B}{x+1}+\frac{C}{3x-4} \ (A,\ B,\ C \text{は定数})$となるとき,$A,\ B,\ C$を$a$と$b$の式で表せ.
(2)$2a+7b=0$のとき,$f(x)=0$の解$x_1,\ x_2 \ (x_1<x_2)$を求めよ.
(3)(2)において$a=7$とするとき,定積分$\displaystyle I=\int_{x_1}^{x_2} f(x) \, dx$を求めよ.
防衛大学校 国立 防衛大学校 2010年 第3問
関数$f(x)=x^3-3x^2+3ax+b \ (a,\ b \text{は定数})$について,次の問に答えよ.

(1)$f(x)$が極値を持つような$a$の値の範囲を求めよ.
(2)$f(x)$の極大値と極小値の差が32となるとき,$a$の値を求めよ.
(3)(2)で求めた$a$の値に対し,$f(x)$の区間$-4 \leqq x \leqq 4$における最大値が5であるとする.このとき,$b$の値とこの区間での$f(x)$の最小値$m$を求めよ.
電気通信大学 国立 電気通信大学 2010年 第1問
$n$を自然数とし,$x$を変数とする関数
\[ f_n(x)=(nx+n+1)e^x,\quad g_n(x)=(nx+n-1)e^{-x} \]
を考える.以下の問いに答えよ.

(1)$f_n(x)$の増減を調べ,極値を求めよ.
(2)$g_n(x)$の増減を調べ,極値を求めよ.
(3)$x$軸と$y$軸および曲線$y=f_n(x)$で囲まれた図形の面積$S_n$を求めよ.
(4)$x$軸と$y$軸および曲線$y=g_n(x)$で囲まれた図形の面積$T_n$を求めよ.ただし,$n \geqq 2$とする.
(5)極限値$\displaystyle \lim_{n \to \infty}\frac{T_n}{S_n}$を求めよ.
電気通信大学 国立 電気通信大学 2010年 第2問
座標平面上を運動する動点P$(x,\ y)$が時刻$t$の関数として
\[ x=t \cos \alpha,\quad y=t \sin \alpha-t^2 \]
で与えられているとする.ただし,$\alpha$は$0 \leqq \alpha < 2\pi$を満たす定数とする.直線$y=x$を$\ell$とするとき,以下の問いに答えよ.

(1)時刻$t=0$における動点Pの速度$\overrightarrow{v}$とその大きさ$|\overrightarrow{v}|$を求めよ.
(2)Pが直線$\ell$上の点を通る時刻$t$をすべて求めよ.
(3)正の時刻においてPが$\ell$上の点を通るための$\alpha$の範囲を求めよ.

以下では,$\alpha$は(3)で求めた範囲にあるとする.

\mon[(4)] 正の時刻においてPが通る$\ell$上の点の$x$座標を求めよ.
\mon[(5)] (4)で求めた$\ell$上の点の$x$座標を$f(\alpha)$とし,$\alpha$を(3)で求めた範囲で変化させる.$f(\alpha)$の最大値,最小値を求め,それらを与える$\alpha$の値を求めよ.
宇都宮大学 国立 宇都宮大学 2010年 第4問
関数$f(x)$を,$x \leqq 1$のとき$f(x)=x^2$と定め,$x>1$のとき$f(x)=2x-1$と定める.さらに,実数$t$に対して
\[ g(t) = \int_t^{t+3} f(x) \, dx \]
と定めるとき,次の問いに答えよ.

(1)$g(0)$を求めよ.
(2)$g(t)$を$t$の式で表せ.
(3)関数$g(t)$の$-3 \leqq t \leqq 3$における最大値,最小値を求めよ.
茨城大学 国立 茨城大学 2010年 第1問
以下の各問に答えよ.

(1)$n$を$3$以上の自然数とする.整式$x^n$を$x^2-4x+3$で割ったときの余りを求めよ.
(2)数列
\[ 1,\quad 1+3+1,\quad 1+3+9+3+1,\quad 1+3+9+27+9+3+1,\quad \cdots \]
の第$n$項から第$2n$項までの和を求めよ.ただし,$n$は自然数とする.
(3)微分可能な関数$f(x)$が$f(0)=0$かつ$f^\prime(0)=\pi$を満たすとき,次の極限値を求めよ.
\[ \lim_{\theta \to 0} \frac{f(1-\cos 2\theta)}{\theta^2} \]
茨城大学 国立 茨城大学 2010年 第4問
曲線$C:y =(x-3)\sqrt{x} (x>0)$の法線を考える.ただし,曲線$C$上の点$\mathrm{P}$における法線とは,点$\mathrm{P}$を通り,この曲線上の点$\mathrm{P}$における接線に垂直に交わる直線のことである.このとき,以下の各問に答えよ.

(1)関数$y=(x-3)\sqrt{x} (x>0)$の増減,極値を調べて,そのグラフをかけ.
(2)曲線$C$上の点$(t,\ (t-3)\sqrt{t})$における法線の方程式を求めよ.
(3)$a$を正の定数とするとき,点$(a,\ 0)$を通る法線の本数を調べよ.
茨城大学 国立 茨城大学 2010年 第1問
以下の各問に答えよ.

(1)平行四辺形$\mathrm{ABCD}$の辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{E}$,直線$\mathrm{AE}$と対角線$\mathrm{BD}$との交点を$\mathrm{F}$,直線$\mathrm{AE}$と直線$\mathrm{CD}$との交点を$\mathrm{G}$とする.$\overrightarrow{\mathrm{AB}}$を$\overrightarrow{a}$で,$\overrightarrow{\mathrm{AD}}$を$\overrightarrow{b}$で表すとき,$3$つのベクトル$\overrightarrow{\mathrm{AE}},\ \overrightarrow{\mathrm{AF}},\ \overrightarrow{\mathrm{AG}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表せ.
(2)関数$g(x)$を次式で定める.
\[ g(x)=\frac{1}{\pi}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \{ x \cos t+(1-x) \sin t \}^2 \, dt \]
このとき,$g(x)$の最小値を求めよ.
山形大学 国立 山形大学 2010年 第4問
関数$f(x)$は,すべての実数$x$に対して$f(x+2\pi)=f(x)$を満たす連続な関数とし,$\displaystyle \int_0^{2\pi} f(t) \, dt>0$とする.さらに
\[ g(x)=x^3+(3x^2-1) \int_0^\pi f(2t+x) \, dt \]
とする.このとき,次の問に答えよ.

(1)すべての実数$a$に対して$\displaystyle \int_0^a f(t) \, dt=\int_{2 \pi}^{a+2\pi}f(t) \, dt$が成り立つことを示せ.
(2)すべての実数$a$に対して$\displaystyle \int_a^{a+2\pi} f(t) \, dt=\int_0^{2\pi}f(t) \, dt$が成り立つことを示せ.
(3)関数$g(x)$は3次関数であることを示せ.
(4)関数$g(x)$の極大値と極小値を$\displaystyle c=\int_0^{2\pi}f(t) \, dt$を用いて表せ.
(5)方程式$g(x)=0$の異なる実数解がちょうど2個のとき,$c$の値を求めよ.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。