タグ「関数」の検索結果

201ページ目:全2213問中2001問~2010問を表示)
富山大学 国立 富山大学 2010年 第1問
$0 \leqq t \leqq 1$をみたす$t$に対し,$\sin x=t$となる$x$が$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$の範囲にただ1つ存在する.その$x$を$f(t)$と表すことにする.さらに,$t$の関数$g(t)$を
\[ g(t) = \int_0^{\frac{\pi}{2}} |\sin x-t| \, dx - 2tf(t)+\frac{3}{2}\pi t \]
で定義する.このとき,次の問いに答えよ.

(1)$\displaystyle \int_0^{\frac{\pi}{2}} |\sin x-t| \, dx$を,$t$と$f(t)$を用いて表せ.
(2)$g(t)$を,$f(t)$を含まない式で表せ.
(3)$g(t)$の$0 \leqq t \leqq 1$における最大値を求めよ.
島根大学 国立 島根大学 2010年 第3問
次の問いに答えよ.

(1)すべての実数$x$に対して次の等式を満たす関数$f(x)$を求めよ.
\[ f(x)=\sin^2 x+2\sqrt{2} \int_0^{\frac{\pi}{4}} f(t) \cos t \, dt \]
(2)すべての実数$x$に対して次の等式を満たす関数$g(x)$を求めよ.
\[ g(x)=x-\frac{1}{2}\sin 2x+ \int_0^{x} g^{\, \prime}(t) \cos t \, dt \]
ただし,$g(x)$は微分可能で,その導関数$g^{\, \prime}(x)$は連続であるとする.
琉球大学 国立 琉球大学 2010年 第4問
$a>0$とし,
\[ f(x)=a^2(x+1)e^{-ax} \]
とおく.

(1)関数$f(x)$の最大値とそのときの$x$の値を求めよ.
(2)(1)で求めた$x$の値を$c$とする.曲線$y=f(x)$と$x$軸,$y$軸および直線$x=c$で囲まれた図形の面積を$S(a)$とする.$0<a<1$における$S(a)$の最大値とそのときの$a$の値を求めよ.ただし,$e>2$であることを証明なしに用いてよい.
島根大学 国立 島根大学 2010年 第4問
次の問いに答えよ.

(1)$\displaystyle \lim_{x \to \infty} \left( \frac{x^3}{x^2-1}-x \right)$を求めよ.
(2)関数$\displaystyle y=\frac{x^3}{x^2-1}$の増減,極値,グラフの凹凸を調べ,そのグラフの概形をかけ.
(3)$k$を定数とするとき,方程式$x^3-kx^2+k=0$の異なる実数解の個数を調べよ.
富山大学 国立 富山大学 2010年 第3問
$\displaystyle f(x)=(1+x)^{\frac{1}{x}} \ (x>0)$とするとき,次の問いに答えよ.

(1)$\log f(x)$を微分することによって,$f(x)$の導関数を求めよ.
(2)$0<x_1<x_2$をみたす実数$x_1,\ x_2$に対して,$f(x_1)>f(x_2)$であることを証明せよ.
(3)$\displaystyle \left( \frac{101}{100} \right)^{101}$と$\displaystyle \left( \frac{100}{99} \right)^{99}$の大小を比較せよ.
富山大学 国立 富山大学 2010年 第1問
$\displaystyle f(x)=(1+x)^{\frac{1}{x}} \ (x>0)$とするとき,次の問いに答えよ.

(1)$\log f(x)$を微分することによって,$f(x)$の導関数を求めよ.
(2)$0<x_1<x_2$をみたす実数$x_1,\ x_2$に対して,$f(x_1)>f(x_2)$であることを証明せよ.
(3)$\displaystyle \left( \frac{101}{100} \right)^{101}$と$\displaystyle \left( \frac{100}{99} \right)^{99}$の大小を比較せよ.
富山大学 国立 富山大学 2010年 第2問
$0 \leqq t \leqq 1$をみたす$t$に対し,$\sin x=t$となる$x$が$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$の範囲にただ1つ存在する.その$x$を$f(t)$と表すことにする.さらに,$t$の関数$g(t)$を
\[ g(t) = \int_0^{\frac{\pi}{2}} |\sin x-t| \, dx - 2tf(t)+\frac{3}{2}\pi t \]
で定義する.このとき,次の問いに答えよ.

(1)$\displaystyle \int_0^{\frac{\pi}{2}} |\sin x-t| \, dx$を,$t$と$f(t)$を用いて表せ.
(2)$g(t)$を,$f(t)$を含まない式で表せ.
(3)$g(t)$の$0 \leqq t \leqq 1$における最大値を求めよ.
富山大学 国立 富山大学 2010年 第2問
$\displaystyle f(x)=(1+x)^{\frac{1}{x}} \ (x>0)$とするとき,次の問いに答えよ.

(1)$\log f(x)$を微分することによって,$f(x)$の導関数を求めよ.
(2)$0<x_1<x_2$をみたす実数$x_1,\ x_2$に対して,$f(x_1)>f(x_2)$であることを証明せよ.
(3)$\displaystyle \left( \frac{101}{100} \right)^{101}$と$\displaystyle \left( \frac{100}{99} \right)^{99}$の大小を比較せよ.
富山大学 国立 富山大学 2010年 第3問
$0 \leqq t \leqq 1$をみたす$t$に対し,$\sin x=t$となる$x$が$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$の範囲にただ1つ存在する.その$x$を$f(t)$と表すことにする.さらに,$t$の関数$g(t)$を
\[ g(t) = \int_0^{\frac{\pi}{2}} |\sin x-t| \, dx - 2tf(t)+\frac{3}{2}\pi t \]
で定義する.このとき,次の問いに答えよ.

(1)$\displaystyle \int_0^{\frac{\pi}{2}} |\sin x-t| \, dx$を,$t$と$f(t)$を用いて表せ.
(2)$g(t)$を,$f(t)$を含まない式で表せ.
(3)$g(t)$の$0 \leqq t \leqq 1$における最大値を求めよ.
高知大学 国立 高知大学 2010年 第3問
関数$f(x)$の導関数$f^{\, \prime}(x)$は$f^{\, \prime}(x)=x^2-1$を満たし,さらに$f(3)=6$であるとする.このとき,次の問いに答えよ.

(1)$f(x)$を求めよ.
(2)$f(x)$の極大値と極小値を求めよ.
(3)曲線$y=f(x)$と直線$y=kx$が接するときの$k$の値を求めよ.
(4)$\displaystyle g(x)=\frac{2}{9}x^3+\frac{2}{3}x^2-2x$とする.このとき,$y=f(x)$と$y=g(x)$のグラフを同一座標平面上に図示せよ.また,それらの共有点の座標を求めよ.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。