タグ「関数」の検索結果

196ページ目:全2213問中1951問~1960問を表示)
三重県立看護大学 公立 三重県立看護大学 2011年 第4問
関数$f(x)=x^3-x^2+mx+1$について,次の問いに答えなさい.

(1)関数$f(x)$の極大値と極小値の差が$\displaystyle \frac{32}{27}$となるとき,$m$の値を求めなさい.
(2)$(1)$のとき,関数$f(x)$の極大値と極小値,およびそれぞれの$x$の値を求めなさい.
三重県立看護大学 公立 三重県立看護大学 2011年 第1問
次の$(1)$から$(8)$に答えなさい.

(1)$\displaystyle \lim_{x \to 3} \frac{x^2+px+q}{x-3}=7$が成り立つように,$p$と$q$の値を求めなさい.
(2)関数$f(x)=ax^2+bx$について,$\displaystyle \int_{-1}^1 f(x) \, dx=2$および$\displaystyle \int_2^4 f(x) \, dx=50$を満足するように,$a$と$b$の値を求めなさい.
(3)$\displaystyle \frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\frac{1}{4 \cdot 5}+\frac{1}{5 \cdot 6}+\cdots +\frac{1}{n(n+1)}$の和を求めなさい.
(4)$a(b^2-c^2)-b(a^2-c^2)-c(b^2-a^2)$を因数分解しなさい.
(5)学生$10$人が$3$台の車($\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$)に分乗する.$\mathrm{A}$に$5$人,$\mathrm{B}$に$3$人,$\mathrm{C}$に$2$人ずつ分乗する方法は何通りになるか,求めなさい.
(6)$\displaystyle \log_2 \frac{1}{2}+2 \log_2 \sqrt{32}$を簡単にしなさい.
(7)$\sin 75^\circ+\cos 15^\circ$を求めなさい.
(8)$3$つの箱($\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$)に「くじ」が$10$本ずつ入っている.そのうち,「当たり」が$\mathrm{A}$の箱には$2$本,$\mathrm{B}$の箱には$3$本,$\mathrm{C}$の箱には$1$本入っている.それぞれの箱から$1$本ずつ無作為に「くじ」を引いたとき,$3$本とも「はずれ」である確率を求めなさい.
和歌山県立医科大学 公立 和歌山県立医科大学 2011年 第4問
次の問いに答えよ.

(1)関数$\displaystyle y=\frac{\sin^2 x}{x}$の導関数を求めよ.
(2)$n=1,\ 2,\ 3$に対して,$\displaystyle a_n=\int_{n\pi}^{(n+1)\pi} \frac{|\sin x|}{x} \, dx$とおく.連立不等式
\[ \frac{\pi}{2} \leqq x\leqq 2\pi,\quad 0 \leqq y \leqq |\displaystyle\frac{\sin x|{x}} \]
によって表される領域の部分を$x$軸のまわりに$1$回転させてできる立体の体積を,$a_1$,$a_2$,$a_3$を用いて表せ.
富山県立大学 公立 富山県立大学 2011年 第1問
$a$と$b$は定数とする.$2$つの関数$f(x)=x^2-2ax+a^2+b$,$g(x)=2 |x|$について,次の問いに答えよ.

(1)$b=0$のとき,$y=f(x)$と$y=g(x)$のグラフの共有点の個数が$4$個となるように,$a$の値の範囲を定めよ.
(2)$y=f(x)$と$y=g(x)$のグラフの共有点の個数が$1$個のとき,$a$と$b$が満たす条件を求めよ.
岐阜薬科大学 公立 岐阜薬科大学 2011年 第6問
関数$\displaystyle f(x)=\frac{(\log x)^n}{x}$について,次の問いに答えよ.ただし,$n$は自然数とする.

(1)関数$f(x)$の増減,極値を調べよ.
(2)$n=3$のとき,関数$f(x)$の曲線の凹凸を調べ,そのグラフをかけ.
島根県立大学 公立 島根県立大学 2011年 第1問
次の問いに答えよ.

(1)$f(x)=x^2+bx+c$,$g(x)=x^2+(b+2)x+c$とする.$f(2011)=0$かつ$g(2010)=-1$のとき,$b$と$c$の値を求めよ.
(2)方程式$3^{2x}-2 \cdot 3^{x+1}=27$を解け.
(3)$\displaystyle \sin \alpha=\frac{1}{3},\ \cos \beta=-\frac{1}{2}$のとき,$\sin (\alpha+\beta)$,$\cos (\alpha-\beta)$,$\tan (\alpha-\beta)$の値を求めよ.ただし,$\displaystyle 0<\alpha<\frac{\pi}{2}$,$\displaystyle \frac{\pi}{2}<\beta<\pi$とする.
(4)多項式$P(x)$を$(x-5)$,$(x-7)$で割った余りがそれぞれ$3,\ 4$である.このとき,$P(x)$を$(x-5)(x-7)$で割った余りを求めよ.
横浜市立大学 公立 横浜市立大学 2011年 第1問
以下の問いに答えよ.

(1)関数
\[ f(x)=x \sin^2 x \quad (0 \leqq x \leqq \pi) \]
の最大値を与える$x$を$\alpha$とするとき,$f(\alpha)$を$\alpha$の分数式で表すと$[$1$]$となる.
(2)多項式
\[ a^4+b^4+c^4-2a^2b^2-2a^2c^2-2b^2c^2 \]
を因数分解すると$[$2$]$となる.
(3)$N$を与えられた自然数とし,$f(x)$および$g(x)$を区間$(-\infty,\ \infty)$で$N$回以上微分可能な関数とする.$f(x)$と$g(x)$から定まる関数を次のように定義する.$t$を与えられた実数として,
\[ \begin{array}{lll}
(f *_t g)(x) &=& \sum_{k=0}^N \displaystyle\frac{t^k}{2^k k!} f^{(k)}(x)g^{(k)}(x) \\
&=& \displaystyle f(x)g(x)+\frac{t}{2}f^\prime(x)g^\prime(x)+\cdots +\frac{t^N}{2^N N!} f^{(N)}(x)g^{(N)}(x)
\end{array} \]
とおく.ここに,$f^{(k)}(x)$は$f(x)$の第$k$次導関数である($g^{(k)}(x)$も同様である).$a$を実数,$n$を$N$以下の自然数とする.$f(x)=e^{2ax}$,$g(x)=x^n$にたいし,二項定理を用いて$(f *_t g)(x)$を計算すると$[$3$]$となる.
(4)関係式
\[ f(x)+\int_0^x f(t)e^{x-t} \, dt=\sin x \]
をみたす微分可能な関数$f(x)$を考える.$f(x)$の導関数$f^\prime(x)$を求めると,$f^\prime(x)=[$4$]$となる.$f(0)=[$5$]$であるから$f(x)=[$6$]$となる.
奈良県立医科大学 公立 奈良県立医科大学 2011年 第1問
$0$以上の任意の整数$i$に対して,$x$の$i$次式$g_i(x)$を$i=0$のとき$g_0(x)=1$,$i \geqq 1$のとき$\displaystyle g_i(x)=\frac{x(x+1) \cdots (x+i-1)}{i!}$と定義する.

(1)$\displaystyle f(x)=\sum_{i=0}^n a_ix^i$(但し$a_n \neq 0$)を$x$に関する実数係数の$n (\geqq 0)$次式とする.このとき,等式$\displaystyle f(x)=\sum_{i=0}^n c_i \, g_i(x)$が任意の実数$x$について成り立つような実数$c_i$($0 \leqq i \leqq n$,但し$c_n \neq 0$)が一意的に存在することを証明せよ.
(2)$(1)$において,$n>0$のとき等式$\displaystyle f(x)-f(x-1)=\sum_{i=1}^n c_i \, g_{i-1}(x)$が成り立つことを証明せよ.
(3)$F(x) (\neq 0)$を$x$に関する実数係数の$n (\geqq 0)$次式とし,任意の整数$a$に対して$F(a)$が整数であると仮定する.このとき,等式$\displaystyle F(x)=\sum_{i=0}^n d_i \, g_i(x)$が任意の実数$x$について成り立つような整数$d_i$($0 \leqq i \leqq n$,但し$d_n \neq 0$)が一意的に存在することを証明せよ.
福岡女子大学 公立 福岡女子大学 2011年 第2問
$\displaystyle f(x)=x^3-3ax^2-3bx+c,\ H(x)=\int f(x) \, dx$とおく.また,方程式$f^\prime(x)=0$は異なる解を持ち,$x=-1$はその$1$つの解とする.次の問に答えなさい.

(1)$f^\prime(x)=0$を満たすもう$1$つの解を$a$を用いて表しなさい.
(2)$\displaystyle a \leqq -\frac{1}{2}$のとき,$H(x)$の値が$x>0$でつねに増加するための$c$の値の範囲を求めなさい.
(3)$\displaystyle a>-\frac{1}{2}$のとき,$H(x)$の値が$x>0$でつねに増加するための$c$の値の範囲を求めなさい.
釧路公立大学 公立 釧路公立大学 2011年 第3問
半径が$a$の球に内接する直円錐のうち,体積が最も大きいものを直円錐$C$とし,その高さを$h$,体積を$V$とする.ただし,$a$は定数であり,円周率は$\pi$とする.このとき,以下の各問に答えよ.

(1)直円錐$C$の体積$V$を$h$の関数で表せ.
(2)$a=6$のとき,$h$と$V$を求めよ.
(3)$(2)$において,直円錐$C$の表面を底面の円と側面の扇形に分解したとき,扇形の中心角$\theta$を求めよ.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。