タグ「関数」の検索結果

195ページ目:全2213問中1941問~1950問を表示)
大阪府立大学 公立 大阪府立大学 2011年 第5問
関数$f(x)$を
\[ f(x)=e^{ax} \int_0^x |\cos (x-t)| \, dt \]
と定める.ただし,$e$は自然対数の底とし,$a$は実数とする.このとき,次の問いに答えよ.

(1)$0 \leqq x \leqq \pi$を満たす$x$に対して,
\[ I(x)=\int_0^x |\cos (x-t)| \, dt \]
を求めよ.
(2)関数$f(x)$が区間$\displaystyle 0 \leqq x < \frac{\pi}{2}$において極大値をもつような$a$の値の範囲を求めよ.
(3)関数$f(x)$が2つの区間$\displaystyle 0 \leqq x < \frac{\pi}{2}$と$\displaystyle \frac{\pi}{2} \leqq x \leqq \pi$のどちらの区間においても極大値をもつような$a$の値の範囲を求めよ.
大阪府立大学 公立 大阪府立大学 2011年 第5問
2つの関数$f(t)=t \log t$と$g(t)=t^3-9t^2+24t$が与えられているとき,以下の問いに答えよ.

(1)$f(t)$は$t \geqq 1$の範囲で単調に増加することを示せ.
(2)$t \geqq 1$のとき
\[ \left\{
\begin{array}{l}
x=f(t) \\
y=g(t)
\end{array}
\right. \]
と媒介変数表示される関数$y=h(x)$の$x \geqq 0$の範囲における増減を調べて,極大値と極小値を求めよ.
(3)$xy$平面上で,曲線$y=h(x)$,2直線$x=f(2),\ x=f(4)$と$x$軸で囲まれた部分の面積を求めよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2011年 第3問
関数$f(x)=x^2-2 |2x-1|+2$について,以下の問いに答えよ.

(1)$y=f(x)$のグラフを描け.
(2)$y=f(x)$のグラフと$x$軸で囲まれた$2$つの部分の面積の和を求めよ.
(3)$y=f(x)$のグラフに,異なる$2$点で接する直線を求めよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2011年 第4問
座標平面において,原点を通り傾きが$\tan 2\theta$の直線を$\ell$で表す.ただし,$\theta$は$\displaystyle 0<\theta<\frac{\pi}{4}$を満たすとする.中心が第1象限に属し,直線$\ell$と$x$軸に接する半径1の円$C$を考える.さらに,円$C$と直線$\ell$および$x$軸に接し,中心が第1象限に属する2つの円のうち,面積が大きいものを$C^\prime$で表す.以下の問いに答えよ.

(1)円$C$の方程式を求めよ.
(2)円$C^\prime$の半径を,$\theta$の関数として表せ.
(3)円$C^\prime$の円周の長さが,円$C$の円周の長さの3倍になるように$\theta$の値を定めよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2011年 第5問
$2$次関数$f(x)=x^2-2x+2$について,以下の問いに答えよ.

(1)$t$を実数とする.$t-1 \leqq x \leqq t$の範囲において,$f(x)$の最大値を$t$の関数の形で求めよ.
(2)$(1)$で求めた$t$の関数を$p(t)$とおく.$t$がすべての実数値をとって変化するとき,座標平面上の点$(t,\ p(t))$の軌跡を描け.
(3)$t$を実数とする.$t-1 \leqq x \leqq t$の範囲において,$f(x)$の最小値を$t$の関数の形で求めよ.
(4)$(3)$で求めた$t$の関数を$q(t)$とおく.$t$がすべての実数値をとって変化するとき,座標平面上の点$(t,\ q(t))$の軌跡を描け.
宮城大学 公立 宮城大学 2011年 第1問
次の空欄$[ア]$から$[ケ]$にあてはまる数や式を書きなさい.

(1)自然数$n$に対し$n!$で$n$の階乗$1 \cdot 2 \cdot 3 \cdot \cdots \cdot (n-1) \cdot n$を表し,$2$を底とする対数関数を$\log_2 (x)$とする.このとき,
\[ \log_2(1!)-\log_2(2!)+\log_2(3!)-\log_2(4!)=[ア] \]
となる.
(2)三角形$\mathrm{ABC}$において$\angle \mathrm{A}$,$\angle \mathrm{B}$,$\angle \mathrm{C}$の大きさを$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,辺$\mathrm{BC}$の長さを$a$,辺$\mathrm{CA}$の長さを$b$,辺$\mathrm{AB}$の長さを$c$,三角形$\mathrm{ABC}$の面積を$S$とおく.$S$を$b,\ c$と$\mathrm{A}$を使って表すと,
\[ S=\frac{1}{2}bc [イ] \]
となる.また,$a,\ b,\ c,\ \mathrm{A},\ \mathrm{B},\ \mathrm{C}$の間には
\[ b=a \frac{[ウ]}{\sin \mathrm{A}},\quad c=a \frac{[エ]}{\sin \mathrm{A}} \]
という関係がある.よって,$S$を$a,\ \mathrm{A},\ \mathrm{B},\ \mathrm{C}$で表すと,
\[ S=\frac{1}{2}a^2 [オ] \]
となる.とくに,$\mathrm{B}=30^\circ$,$\mathrm{C}=45^\circ$,$a=1$のときには,
\[ \sin \mathrm{B}=[カ],\quad \sin \mathrm{C}=[キ] \]
また,
\[ \sin \mathrm{A}=[ク] \]
だから,
\[ S=\frac{-1+[ケ]}{4} \]
となる.
会津大学 公立 会津大学 2011年 第5問
関数$\displaystyle y=\frac{\log x}{x^2}$のグラフを$C$とするとき,次の問いに答えよ.

(1)関数$\displaystyle y=\frac{\log x}{x^2}$の増減,極値,$C$の凹凸,変曲点を調べて,増減表をつくり,$C$を座標平面上に描け.ただし,$\displaystyle \lim_{x \to \infty}\frac{\log x}{x^2}=0$を用いてもよい.
(2)$a$を定数とする.方程式$\log x=ax^2$の異なる実数解の個数を調べよ.
名古屋市立大学 公立 名古屋市立大学 2011年 第4問
自然数$n$に対して関数$f_n(x)$を$f_1(x)=x$,$n \geqq 2$のとき$f_n(x)=\displaystyle \int_0^x tf_{n-1}(x-t) \, dt$で定める.次の問いに答えよ.

(1)$f_2(x),\ f_3(x)$を求めよ.
(2)$f_n(x)$を類推し,それが正しいことを証明せよ.
福岡女子大学 公立 福岡女子大学 2011年 第2問
$\displaystyle f(x)=x^3-3ax^2-3bx+c,\ H(x)=\int f(x) \, dx$とおく.また,方程式$f^\prime(x)=0$は異なる解を持ち,$x=-1$はその$1$つの解とする.次の問に答えなさい.

(1)$f^\prime(x)=0$を満たすもう$1$つの解を$a$を用いて表しなさい.
(2)$\displaystyle a \leqq -\frac{1}{2}$のとき,$H(x)$の値が$x>0$でつねに増加するための$c$の値の範囲を求めなさい.
(3)$\displaystyle a>-\frac{1}{2}$のとき,$H(x)$の値が$x>0$でつねに増加するための$c$の値の範囲を求めなさい.
福岡女子大学 公立 福岡女子大学 2011年 第3問
関数$f(x)=e^{\sqrt{3}x} \sin x$について,次の問に答えなさい.

(1)導関数$f^\prime(x)$を求めなさい.
(2)$x$が$0<x<\pi$の範囲にあるとき,関数$f(x)$の極値を与える$x$の値を求めなさい.
(3)定積分$\displaystyle \int_0^\pi e^{\sqrt{3}x} \sin x \, dx$を計算しなさい.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。