タグ「関数」の検索結果

187ページ目:全2213問中1861問~1870問を表示)
明治大学 私立 明治大学 2011年 第4問
$2$つの関数
\[ f(x)=2e^{-x} |\sin x|,\quad g(x)=\sqrt{2}e^{-x} \]
を考える.方程式$f(x)-g(x)=0 (x \geqq 0)$の解を小さいものから順に$x_1,\ x_2,\ x_3,\ \cdots$とする.

(1)次の$[さ]$から$[す]$にあてはまるものを記入せよ.

(i) $x_k=[さ] (k=1,\ 2,\ 3,\ \cdots)$である.
(ii) $a,\ b$を定数とする.
\[ \frac{d}{dx} \{e^{-x}(a \sin x+b \cos x)\}=2e^{-x} \sin x \]
が成り立つのは,$a=[し]$,$b=[す]$のときである.

(2)$\displaystyle S_n=\int_{x_{2n-1}}^{x_{2n}} (f(x)-g(x)) \, dx (n=1,\ 2,\ 3,\ \cdots)$とおく.以下の解答は途中経過も書くこと.

(i) $S_1$を求めよ.
(ii) $S_n (n=2,\ 3,\ 4,\ \cdots)$を求めよ.
(iii) $\displaystyle \sum_{n=1}^\infty S_n$を求めよ.
上智大学 私立 上智大学 2011年 第1問
次の問いに答えよ.

(1)$\mathrm{X}$大学には$5$つの学部があり,全ての学部で入学試験を行っている.次の$7$つの命題$(\mathrm{A})$~$(\mathrm{G})$の中で,お互いに否定命題となっている全ての組を以下の選択肢から選べ.もし,否定命題となっている組で選択肢にないものが存在するときは,$z$もマークせよ.

$(\mathrm{A})$ $\mathrm{X}$大学のある学部の入学試験科目には,数学がある.
$(\mathrm{B})$ $\mathrm{X}$大学の学部の中で,入学試験科目に数学があるのはただ一つである.
$(\mathrm{C})$ $\mathrm{X}$大学の全ての学部の入学試験科目には,数学がある.
$(\mathrm{D})$ $\mathrm{X}$大学には,入学試験科目に数学がない学部がある.
$(\mathrm{E})$ $\mathrm{X}$大学の全ての学部の入学試験科目には,数学がない.
$(\mathrm{F})$ $\mathrm{X}$大学の学部の中で,入学試験科目に数学がないのはただ一つである.
$(\mathrm{G})$ $\mathrm{X}$大学には,入学試験科目に数学がある学部とない学部の両方がある.

選択肢:
\[ \begin{array}{rlp{1mm}rlp{1mm}rlp{1mm}rl}
1. & (\mathrm{A}) \text{と} (\mathrm{C}) & & 2. & (\mathrm{A}) \text{と} (\mathrm{D}) & & 3. & (\mathrm{A}) \text{と} (\mathrm{E}) & & 4. & (\mathrm{A}) \text{と} (\mathrm{G}) \\
5. & (\mathrm{B}) \text{と} (\mathrm{F}) & & 6. & (\mathrm{B}) \text{と} (\mathrm{G}) & & 7. & (\mathrm{C}) \text{と} (\mathrm{D}) & & 8. & (\mathrm{C}) \text{と} (\mathrm{E}) \\
9. & (\mathrm{C}) \text{と} (\mathrm{G}) & & 10. & (\mathrm{D}) \text{と} (\mathrm{E}) & & 11. & (\mathrm{D}) \text{と} (\mathrm{G}) & & 12. & (\mathrm{E}) \text{と} (\mathrm{F})
\end{array} \]
(2)$f(0)=1$,$g(0)=2$を満たす$2$つの整式$f(x)$,$g(x)$に対して$p(x)=f(x)+g(x)$,$q(x)=f(x)g(x)$とおく.$\displaystyle \frac{d}{dx}p(x)=3$,$\displaystyle \frac{d}{dx}q(x)=4x+k$であるとき,$k=[ア]$または$[イ]$である.ただし$[ア]<[イ]$である.
(3)方程式$4^{x+1}+3 \cdot 2^x-1=0$の解は$x=[ウ]$である.
立教大学 私立 立教大学 2011年 第1問
次の空欄ア~セに当てはまる数を記入せよ.

(1)$(x+1)^5$の$x^3$の係数は$[ア]$である.
(2)中心を$\mathrm{O}$とする円の円周上に異なる$2$点$\mathrm{A}$,$\mathrm{B}$があり,$\mathrm{AB}=3$とするとき,$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AO}}$の内積は,$[イ]$である.
(3)$y=x^2+px+q (pq \neq 0)$のグラフが点$(1,\ 1)$を通り,$x$軸に接するとき,$p=[ウ]$,$q=[エ]$である.
(4)$120$人の学生の通学手段について調査したところ,電車を利用する学生が$83$人,バスを利用する学生が$48$人,電車もバスも利用しない学生が$28$人であった.電車とバスの両方を利用する学生は$[オ]$人である.
(5)$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$の$6$枚のカードをよくきって,$6$枚を$1$列に並べるとき,$\mathrm{A}$と$\mathrm{B}$が隣り合う確率は$[カ]$である.
(6)$2$次方程式$x^2-4x-2=0$の解を$\alpha,\ \beta$とする.$\displaystyle \frac{\alpha^2}{\beta}$と$\displaystyle \frac{\beta^2}{\alpha}$を解とする$2$次方程式を$x^2+px+q=0$とするとき,$p=[キ]$,$q=[ク]$である.
(7)方程式$\log_2 \sqrt[3]{x}-\log_4 4x^3+8=0$の解は$x=[ケ]$である.
(8)$x+x^{-1}=7$のとき,$x^{\frac{1}{4}}+x^{-\frac{1}{4}}$は$[コ]$である.ただし,$x>0$とする.
(9)$100$以下の自然数の中で,$4$で割ると$1$余る数の総和は$[サ]$である.
\mon $f^\prime(x)$を$f(x)$の導関数とする.$f^\prime(x)=3x^2-4x-1$,$f(1)=0$を満たすとき,$f(x)$を$f(x)=x^3+px^2+qx+r$とおくと,$p=[シ]$,$q=[ス]$,$r=[セ]$である.
上智大学 私立 上智大学 2011年 第1問
次の問いに答えよ.

(1)$\displaystyle \alpha=\left\{ \left( \frac{413}{8} \right)^{\frac{1}{2}}+6 \right\}^{\frac{1}{3}}-\left\{ \left( \frac{413}{8} \right)^{\frac{1}{2}}-6 \right\}^{\frac{1}{3}}$は整数を係数とする$3$次方程式
\[ 2x^3+[ア]x^2+[イ]x+[ウ]=0 \]
の解である.
(2)$f(x)=x^3-4x$とする.曲線$y=f(x)$上に$2$点$\mathrm{P}(t-1,\ f(t-1))$,$\mathrm{Q}(t+1,\ f(t+1))$をとる.線分$\mathrm{PQ}$が曲線$y=f(x)$と$\mathrm{P}$,$\mathrm{Q}$以外の点で交わるための$t$の条件は
\[ \frac{[エ]}{[オ]}<t<\frac{[カ]}{[キ]} \]
である.
立教大学 私立 立教大学 2011年 第1問
次の空欄ア~サに当てはまる数または式を記入せよ.

(1)$2$つの異なる$2$次方程式$x^2+3px+4=0$,$x^2+3x+4p=0$が共通の実数解を持つとき,$p$の値は$[ア]$である.ただし,$p \neq 1$とする.
(2)三角形$\mathrm{ABC}$において,$\mathrm{BC}=6$,$\mathrm{CA}=4$,$\displaystyle \cos C=\frac{1}{3}$であるとき,$\sin A$の値は$[イ]$である.
(3)不等式$|2x|+|x-4|<6$を解くと,$[ウ]$となる.
(4)実数$x,\ y$が$(3+2i)x+(1-i)y+13+2i=0$を満たすとき,$x=[エ]$,$y=[オ]$である.ただし,$i$は虚数単位とする.
(5)点$\mathrm{Q}$が円$x^2+y^2=4$上を動くとき,点$\mathrm{P}(3,\ 0)$と点$\mathrm{Q}$の中点の軌跡の方程式は$[カ]$である.
(6)$\displaystyle \cos \theta=\frac{1}{5}$のとき,$\tan \theta=[キ]$である.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.
(7)$a=\log_{10}2$,$b=\log_{10}3$とするとき,$\displaystyle \log_{100}\frac{125}{9}$を$a,\ b$を用いて表すと,$[ク]$となる.
(8)等式$\displaystyle f(x)=x^2+4x-\int_0^1 f(t) \, dt$を満たす関数$f(x)$は,$[ケ]$である.
(9)数列$2,\ 4,\ 9,\ 17,\ 28,\ 42,\ \cdots$の第$n$項を$n$を用いて表すと,$[コ]$となる.
\mon 座標空間上に$3$つの点,$\mathrm{A}(1,\ 3,\ -1)$,$\mathrm{B}(-1,\ 2,\ 2)$,$\mathrm{C}(2,\ 0,\ 1)$をとるとき,三角形$\mathrm{ABC}$の重心の座標は$[サ]$である.
上智大学 私立 上智大学 2011年 第1問
次の問いに答えよ.

(1)立方体の各面に$1$~$6$の目が$1$つずつ書かれたサイコロを$2$つ振って,出た目の大きくない方を$x$とする.$x=2$である確率は$\displaystyle \frac{[ア]}{[イ]}$である.$x$の期待値は$\displaystyle \frac{[ウ]}{[エ]}$である.
(2)$A=\left( \begin{array}{cc}
5 & 11 \\
3 & 7
\end{array} \right)$とする.行列$A$が表す$1$次変換により,点$(3,\ -2)$は点$([オ],\ [カ])$に移り,点$([キ],\ [ク])$は点$(3,\ 1)$に移る.
(3)$f(x)=x^3-9x^2+18x+9$とし,
\[ A=\{x \;|\; f(x)>0\},\quad B=\{x \;|\; x>-1\} \]
とする.次が成り立つ.
\[ 1 [あ] A,\quad 5 [い] A,\quad A [う] B \]
\begin{screen}
{\bf あ,い,うの選択肢:} \\
$(\mathrm{a}) \in \quad (\mathrm{b}) \not\in \quad (\mathrm{c}) \ni \quad (\mathrm{d}) \not\ni \quad (\mathrm{e}) \subset \quad (\mathrm{f}) \supset \quad (\mathrm{g}) =$
\end{screen}
また,正の整数$a$に対して,
\[ C=\{x \;|\; 0 \leqq x \leqq a\} \]
とする.$A \supset C$となる最も大きい整数$a$は$a=[ケ]$である.
上智大学 私立 上智大学 2011年 第2問
底面の円の半径が$3 \; \mathrm{cm}$,高さが$6 \; \mathrm{cm}$の直円錐を考える.直円錐の頂点を$\mathrm{P}$,底面の円の中心を$\mathrm{Q}$とし,線分$\mathrm{PQ}$を$2:1$に内分する点を$\mathrm{O}$とする.底面の円の円周を$C_1$,$\mathrm{O}$を通り底面と平行な平面が直円錐と交わってできる円の円周を$C_2$とする.$2$点$\mathrm{A}$,$\mathrm{B}$がそれぞれ$C_1$,$C_2$上を頂点$\mathrm{P}$から見て左回りに移動している.点$\mathrm{A}$の速さは$3 \pi \,\mathrm{cm}/$秒,点$\mathrm{B}$の速さは$\pi \,\mathrm{cm}/$秒であり,時刻$t=0$において,$3$点$\mathrm{P}$,$\mathrm{B}$,$\mathrm{A}$は一直線上にあるとする.

(1)$\mathrm{A}$の角速度は$[コ] \pi$ラジアン$/$秒であり,$\mathrm{B}$の角速度は$\displaystyle \frac{[サ]}{[シ]} \pi$ラジアン$/$秒である.ただし,$\mathrm{A}$の角速度とは,動径$\mathrm{QA}$が$1$秒間に回転する角の大きさのことであり,$\mathrm{B}$の角速度とは,動径$\mathrm{OB}$が$1$秒間に回転する角の大きさのことである.
(2)線分$\mathrm{AB}$の長さを時刻$t$の関数で表すと
\[ \sqrt{[ス]-[セ] \cos \frac{\pi}{2}t } \mathrm{cm} \]
である.
(3)$\cos \angle \mathrm{AOB}$を時刻$t$の関数で表すと
\[ \frac{[ソ]}{\sqrt{[タ]}} \cos \frac{\pi}{2} t \]
である.
(4)三角形$\mathrm{AOB}$の面積を時刻$t$の関数で表すと
\[ \sqrt{[チ]-[ツ] \cos^2 \frac{\pi}{2}t } \mathrm{cm}^2 \]
である.
(5)$3$点$\mathrm{A}$,$\mathrm{O}$,$\mathrm{B}$を含む平面を$S$とする.$\mathrm{Q}$を通り,$S$と直交する直線を$\ell$とし,$\ell$と$S$の交点を$\mathrm{H}$とする.$\displaystyle t=\frac{1}{3}$のとき,線分$\mathrm{QH}$の長さは
\[ \frac{[テ]}{[ト]} \mathrm{cm} \]
である.
上智大学 私立 上智大学 2011年 第3問
座標平面において,動点$\mathrm{P}$の座標$(x,\ y)$が時刻$t$の関数として
\[ x=t^{\frac{1}{4}} (1-t)^{\frac{3}{4}},\quad y=t^{\frac{3}{4}} (1-t)^{\frac{1}{4}} \quad (0 \leqq t \leqq 1) \]
で与えられている.

(1)動点$\mathrm{P}$の$x$座標が最大になるのは$\displaystyle t=\frac{[ナ]}{[ニ]}$のときであり,$y$座標が最大になるのは$\displaystyle t=\frac{[ヌ]}{[ネ]}$のときである.
(2)$0<t<1$のとき,動点$\mathrm{P}$の速さの最小値は$\displaystyle \frac{\sqrt{[ノ]}}{[ハ]}$である.
(3)動点$\mathrm{P}$が直線$y=x$上に来るのは$t=0$のとき,$\displaystyle t=\frac{[ヒ]}{[フ]}$のとき,$t=1$のときの$3$回である.
(4)$t$が$0 \leqq t \leqq 1$の範囲を動くとき,動点$\mathrm{P}$の描く曲線を$L$とする.$L$で囲まれる図形の面積は$\displaystyle \frac{[ヘ]}{[ホ]}$である.
上智大学 私立 上智大学 2011年 第1問
次の問いに答えよ.

(1)$x>1$とする.
\[ \sqrt{\log_2 x}>\log_2 \sqrt{x} \]
を満たす$x$の値の範囲は$[ア]<x<[イ]$である.
(2)$x$の関数
\[ y=\sqrt{2} (\sin x-\cos x)-\sin x \cos x+1 \quad \left( -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2} \right) \]
を考える.

(i) $t=\sin x-\cos x$とおくと,
\[ y=\frac{[ウ]}{[エ]}t^2+\sqrt{[オ]}t+\frac{[カ]}{[キ]} \]
が成り立つ.
(ii) $\displaystyle x=\frac{[ク]}{[ケ]} \pi$で$y$は最大値$[コ]+\sqrt{[サ]}$をとり,$\displaystyle x=\frac{[シ]}{[ス]} \pi$で$y$は最小値$\displaystyle \frac{[セ]}{[ソ]}$をとる.
立教大学 私立 立教大学 2011年 第1問
次の空欄ア~スに当てはまる数を記入せよ.

(1)点$\mathrm{P}(1,\ 2)$と点$\mathrm{Q}(0,\ -1)$を通り,点$\mathrm{Q}$での接線の傾きが$2$である円の方程式は$(x-[ア])^2+(y-[イ])^2=[ウ]$である.
(2)$\overrightarrow{a}=(-2,\ 2,\ 1)$,$\overrightarrow{b}=(-5,\ 4,\ 3)$のとき,$\overrightarrow{a}$と$2 \overrightarrow{a}-\overrightarrow{b}$のなす角度は$[エ]$である.
(3)$\sin x+\sqrt{3} \cos x-2=0 (0<x<\pi)$を解くと,$x=[オ]$である.
(4)数列$\displaystyle \frac{1}{1},\ \frac{1}{2},\ \frac{2}{2},\ \frac{1}{3},\ \frac{2}{3},\ \frac{3}{3},\ \frac{1}{4},\ \frac{2}{4},\ \frac{3}{4},\ \frac{4}{4},\ \frac{1}{5},\ \cdots$に関して,$\displaystyle \frac{17}{30}$はこの数列の第$[カ]$項である.

(5)$\displaystyle \omega=\frac{-1+\sqrt{3}i}{2}$に対して,$\omega^8$は$[キ]+[ク]i$となる.ただし$i$は虚数単位とし,キ,クは実数とする.
(6)$2$次方程式$x^2+ax+16=0$が整数解を持つような整数$a$のうち最大のものは$[ケ]$である.
(7)サイコロを$4$回振る.連続して偶数があらわれず,かつ連続して奇数もあらわれない確率は$[コ]$である.
(8)$x$が実数を動くとき,関数$f(x)=4^x+4^{-x}-5(2^x+2^{-x})+9$の最小値は,$[サ]$である.
(9)関数$f(x)$が等式$\displaystyle \int_a^x f(t) \, dt=x^2+(3a+8)x+4$をみたすとき,定数$a$の値は$[シ]$である.
\mon $6^{30}$は$[ス]$桁の整数である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。