タグ「関数」の検索結果

182ページ目:全2213問中1811問~1820問を表示)
愛媛大学 国立 愛媛大学 2011年 第1問
次の問いに答えよ.

(1)関数$y=x^2-3x+7-3 |x-2|$のグラフをかけ.
(2)方程式$\displaystyle \log_5x-\frac{4}{\log_5x}+\frac{\log_5 x^3}{\log_5 x}=0$を解け.
(3)$a>0$とする.関数$f(t)=t(a-t^2) \ (0<t<\sqrt{a})$の最大値が$2$であるとき,$a$の値を求めよ.
(4)正四面体の各面に$0,\ 1,\ 2,\ 3$の数字が$1$つずつ書かれているさいころがある.このさいころを投げたとき,各面が底面になる確率は等しいものとする.このようなさいころを$2$つ同時に投げ,おのおののさいころの底面に書かれている数の積を$X$とする.$X$の期待値を求めよ.
(5)$2$つの曲線$y=x^2$,$y=-x^2+2x+1$で囲まれる図形の面積を求めよ.
浜松医科大学 国立 浜松医科大学 2011年 第3問
実数$k$は$\displaystyle \frac{\pi}{3} \leqq k \leqq \frac{\pi}{2}$の範囲にあるとする.
\[ \begin{array}{ll}
f(x)=\int_{-k}^k \sin (x-t) \cos t \, dt & (-k \leqq x \leqq k) \\
g(x)=\int_{-k}^k |\sin (x-t)|\cos t \, dt & (-k \leqq x \leqq k)
\end{array} \]
と定めるとき,以下の問いに答えよ.

(1)$\displaystyle f \left( \frac{\pi}{6} \right)$と$\displaystyle g \left( -\frac{\pi}{6} \right)$,$2$つの定積分の値をそれぞれ求めよ.
(2)差$f(x)-g(x)$は,区間$-k \leqq x \leqq k$で増加することを示せ.
(3)曲線$y=g(x)$の変曲点は何個あるか,調べよ.
山梨大学 国立 山梨大学 2011年 第2問
実数全体で定義された関数$F(x)$が次の条件$①$と$②$の両方を満たすとき「$F(x)$は性質$(\mathrm{P})$を持つ」ということにする.

$①$ すべての実数$x$について$F(x)>0$である.
$②$ $F(x)$は何度でも微分が可能で$\displaystyle \frac{d^2}{dx^2}\log F(x)=\frac{1}{\{F(x)\}^2}$を満たす.


(1)$y=f(x)$が性質$(\mathrm{P})$を持つとき$y^{\prime\prime}y-(y^\prime)^2=1$,$y^{\prime\prime\prime}y-y^{\prime\prime}y^\prime=0$となること,および$\displaystyle \frac{y^{\prime\prime}}{y}$は正の定数であることを示せ.
(2)$y=f(x)$は性質$(\mathrm{P})$を持つとする.$\displaystyle \frac{y^{\prime\prime}}{y}=k^2$($k$は正の定数)とおくとき,$k^2y^2-(y^\prime)^2=1$であることを示し,さらに$ky-y^\prime>0$および$ky+y^\prime>0$が成り立つことを示せ.
(3)$c$を実数とする.(2)のとき,関数$\displaystyle kf(c)y+\frac{1}{k}f^\prime(c)y^\prime$も性質$(\mathrm{P})$を持つことを証明せよ.ただし$①$を示すために
\[ kf(c)y+\frac{1}{k}f^\prime(c)y^\prime=f(c)(ky \mp y^\prime) \pm \frac{1}{k}y^\prime (kf(c) \pm f^\prime(c)) \quad (\text{複号同順}) \]
を利用してもよい.
防衛大学校 国立 防衛大学校 2011年 第1問
関数$f(x)=4^x-2^{x+3}-2^{-x+3}+4^{-x} (x \geqq 0)$について,次の問に答えよ.

(1)$2^x+2^{-x}=t$とおくとき,$f(x)$を$t$の式で表せ.
(2)$t$のとり得る値の範囲を求めよ.
(3)$f(x)$の最小値$m$とそのときの$x$の値を求めよ.
鳴門教育大学 国立 鳴門教育大学 2011年 第1問
関数$f(x)=x(2a-|x|)$を考える.ただし,$a$は実数である.$-1 \leqq x \leqq 1$における$f(x)$の最大値を$g(a)$とおく.$g(a)$を$a$を用いて表し,そのグラフをかけ.
東京海洋大学 国立 東京海洋大学 2011年 第1問
$3$次関数$f(x)$を$f(x)=x^3-4x$で定める.このとき,次の問に答えよ.

(1)関数$f(x)$の極値を求め,$y=f(x)$のグラフをかけ.
(2)点$(1,\ 4)$を通る直線と$y=|f(x)|$のグラフが,$x>0$の範囲において$2$個の共有点をもつという.このような直線をすべて求めよ.ただし,直線の傾きは負とする.
東京海洋大学 国立 東京海洋大学 2011年 第2問
関数$f(x)=ax^2+bx+c$に対して次の等式が成り立っているとする.
\[ f^\prime(x)=x \int_{-2}^1 f(t) \, dt+\int_0^1 tf^\prime(t) \, dt \]
このとき,次の問に答えよ.ただし,$a,\ b,\ c$は定数で$a>0$とする.

(1)$b,\ c$を$a$で表せ.
(2)曲線$y=f(x)$の$\displaystyle x \geqq -\frac{1}{2}$の部分と$x$軸および$y$軸とで囲まれた図形の面積が$1$のとき,$a$の値を求めよ.
東京海洋大学 国立 東京海洋大学 2011年 第3問
$a$を正の定数とする.関数$f(x)=x(a-x)$,$g(x)=x^2(a-x)$に対し,$2$つの曲線$C_1:y=f(x)$,$C_2:y=g(x)$を考える.以下の問いに答えよ.

ただし,$\displaystyle \int x^3 \, dx=\frac{x^4}{4}+C$($C$は積分定数)を用いてよい.

(1)$g(x)$の極値を$a$を用いて表せ.
(2)$0<a \leqq 1$とする.$C_1$と$x$軸で囲まれた図形の面積が,$C_2$と$x$軸で囲まれた図形の面積の$3$倍になるとき,$a$の値を求めよ.
(3)$a>1$とする.$2$曲線$C_1,\ C_2$で囲まれてできる$2$つの図形の面積が等しくなるとき,$a$の値を求めよ.
大分大学 国立 大分大学 2011年 第2問
$x$の三次関数$y=ax^3+bx^2+cx+d$のグラフはある点に関して対称であることを証明せよ.ここに,$a,\ b,\ c,\ d$は定数で$a \neq 0$とする.
愛媛大学 国立 愛媛大学 2011年 第2問
次の問いに答えよ.

(1)関数$y=x^2-3x+7-3 |x-2|$のグラフをかけ.
(2)$a>0$とする.関数$y=(a-x)\sqrt{x} \ (0<x<a)$の最大値が$2$であるとき,$a$の値を求めよ.
(3)自然数$n$について,等式
\[ 1+2x+3x^2+\cdots +nx^{n-1}=\frac{1-(n+1)x^n+nx^{n+1}}{(1-x)^2} \]
が成り立つことを,数学的帰納法を用いて示せ.ただし,$x \neq 1$とする.
(4)$i$を虚数単位とする.等式$\displaystyle (2+3i)(5a-2i)=\frac{b}{1-i}$を満たす実数$a$と実数$b$の値を求めよ.
(5)次の不定積分を求めよ.
\[ (ⅰ) \int \frac{1}{\tan 4x} \, dx \qquad (ⅱ) \int x \sqrt{1-5x} \, dx \]
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。