タグ「関数」の検索結果

179ページ目:全2213問中1781問~1790問を表示)
鹿児島大学 国立 鹿児島大学 2011年 第3問
$0 \leqq x \leqq 1$とする.このとき,関数$f(x)$を
\[ f(x)=\int_0^1 |t^2-xt| \, dt \]
と定義する.次の各問いに答えよ.

(1)$t$の関数$g(t)=|t^2-xt|$のグラフの概形をかけ.
(2)$f(x)$を求めよ.
(3)$f(x)$の最大値と最小値を求めよ.
鹿児島大学 国立 鹿児島大学 2011年 第4問
関数$f(x)$は
\[ f(x)=\cos x+\int_0^{2\pi} f(y) \sin (x-y) \, dy \]
をみたすものとする.次の各問いに答えよ.

(1)$f(x)$は
\[ f(x)=a \sin x+ b \cos x \]
の形に表されることを示せ.ただし,$a$と$b$は定数である.
(2)$f(x)$を求めよ.
鹿児島大学 国立 鹿児島大学 2011年 第4問
$f(x)$は数直線上の連続関数で,次の条件$(ⅰ)$と$(ⅱ)$をみたすものとする.

$(ⅰ)$ $f(x)$は周期1の周期関数,すなわち,すべての$x$で$f(x+1)=f(x)$が成り立つ.
$(ⅱ)$ $\displaystyle \int_0^1 f(x) \, dx=0$

次の各問いに答えよ.

(1)条件$(ⅰ)$と$(ⅱ)$をみたす恒等的に$0$でない連続関数$f(x)$の例を$1$つ挙げよ.
(2)$\displaystyle F(x)=\int_0^x f(y) \, dy$とおくと,$F(x)$も周期$1$の周期関数であることを示せ.
(3)$n=1,\ 2,\ 3,\ \cdots$に対して,$\displaystyle \frac{d}{dx}F(nx)$を$f$を用いて表せ.
(4)数列$\{a_n\}$を
\[ a_n=\int_0^1 xf(nx) \, dx \quad (n=1,\ 2,\ 3,\ \cdots) \]
と定める.$\displaystyle \lim_{n \to \infty}a_n=0$を示せ.
佐賀大学 国立 佐賀大学 2011年 第4問
次の問いに答えよ.

(1)定義に基づいて次の関数の導関数を求めよ.

\setcounter{tokeikobango}{0}
\mon[$\Tokeiko$] $f(x)=x^2$
\mon[$\Tokeiko$] $f(x)=1$

(2)次の等式を満たす関数$f(x)$,および定数$a$を求めよ.
\[ \int_a^x f(t) \, dt = x^2-1 \]
(3)等式$\displaystyle f(x)=x^2-\int_{-1}^1 f(t) \, dt$を満たす関数$f(x)$を求めよ.
山口大学 国立 山口大学 2011年 第4問
2つの関数$y=ax^2+b,\ y=|(x-1)(x+1)|$のグラフが共有点をもつための必要十分条件を$a,\ b$を用いて表し,点$(a,\ b)$の存在する領域を座標平面上に図示しなさい.
東京農工大学 国立 東京農工大学 2011年 第3問
2つの関数
\[ f(x)=\sin 3x+\sin x+\cos x,\quad g(x)=\cos 3x \]
について,次の問いに答えよ.

(1)区間$0 \leqq x \leqq n\pi$における2つの曲線$y=f(x),\ y=g(x)$の交点の個数を$r$とする.$r$を$n$の式で表せ.ただし,$n$は正の整数とする.
(2)区間$0 \leqq x \leqq \pi$において$f(x)<g(x)$をみたす$x$の範囲を求めよ.
(3)定積分
\[ I=\int_0^\pi |f(x)-g(x)| \, dx \]
の値を求めよ.
東京農工大学 国立 東京農工大学 2011年 第4問
$c$を正の実数とする.関数$f(x)=(x+c)e^{2x}$について,次の問いに答えよ.ただし,$e$は自然対数の底とする.

(1)$y=f(x)$は$x=k$のとき最小値$m$をとる.このとき,$k$と$m$を$c$の式で表せ.
(2)$k$を(1)で求めた値とする.このとき,定積分
\[ T=\int_k^{-c} f(x) \, dx \]
を$c$の式で表せ.
(3)$T$を(2)で求めた値とする.区間$-c \leqq x \leqq 0$において,曲線$y=f(x)$,$x$軸および$y$軸のすべてで囲まれた部分の面積を$S$とする.$\displaystyle S=\frac{e}{2-e}T$となるときの$c$の値を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2011年 第3問
$x$の多項式$f(x)$は
\[ \int_{-1}^1 xf(x) \, dx=0,\quad f(1)=f(-1)=0 \]
を満たしているとする.

(1)このとき$\displaystyle \int_{-1}^1 x^2f^\prime(x) \, dx=0$を示せ.
(2)さらに多項式$f(x)$は3次以下で$\displaystyle \int_{-1}^1 f(x)e^x \, dx=1$を満たしているとする.このような$f(x)$を求めよ.
鹿児島大学 国立 鹿児島大学 2011年 第8問
次の各問いに答えよ.

(1)確率変数$X$は$0$以上$3$以下の値をとり,その確率密度関数$f(x)$は次で与えられているとする.このとき,定数$k$,平均$E(X)$を求めよ.
\[ f(x)=\left\{
\begin{array}{cl}
\displaystyle\frac{1}{2} & (0 \leqq x<1 \text{のとき}) \\
-\displaystyle\frac{1}{4}x+k & (1 \leqq x \leqq 3 \text{のとき})
\end{array}
\right. \]
(2)$Z$を標準正規分布$N(0,\ 1)$に従う確率変数とする.また,任意の$x \ (x \geqq 0)$に対して,関数$g(x)$を$g(x)=P( 0 \leqq Z \leqq x)$とおく.このとき,次の各問いに答えよ.

\mon[(a)] 確率$P(a \leqq Z \leqq b)$を関数$g$で表せ.ただし,$a$と$b$は定数で$a<b$とする.
\mon[(b)] 母平均$50$,母標準偏差$3 \sqrt{10}$の母集団から大きさ$10$の標本を抽出するとき,標本平均が$41.0$以上$48.5$以下になる確率を関数$g$で表せ.
\mon[(c)] $0<p<1$とし,$l_p$は$\displaystyle g(l_p)=\frac{p}{2}$をみたすものとする.母分散$25$の母集団から大きさ$20$の標本を抽出したところ,標本平均が$45$であった.母平均$m$に対する信頼度$100p \%$の信頼区間の区間幅を$l_p$を用いて表せ.
旭川医科大学 国立 旭川医科大学 2011年 第4問
$\displaystyle f(x)=\frac{1}{\cos x}-\tan x \left( 0 \leqq x <\frac{\pi}{2} \right)$とする.次の問いに答えよ.

(1)$g(x)$を$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$で連続で,$\displaystyle 0 \leqq x < \frac{\pi}{2}$では$g(x)=f(x)$を満たす関数とする.

\mon[(a)] $\displaystyle g \left( \frac{\pi}{2} \right)$を求めよ.
\mon[(b)] $g(x)$の増加,減少を調べよ.
\mon[(c)] $\displaystyle \int_0^x g(t) \, dt$を求めよ.

(2)$n$を自然数とし,$c_n$を$\displaystyle \int_{\frac{\pi}{2}-c_n}^{\frac{\pi}{2}}g(t) \, dt=\frac{1}{n} \int_0^{\frac{\pi}{2}} g(t) \, dt$を満たす0と$\displaystyle \frac{\pi}{2}$の間の数とする.次の極限を求めよ.

\mon[(a)] $\displaystyle \lim_{n \to \infty}n(1-\cos c_n)$
\mon[(b)] $\displaystyle \lim_{n \to \infty}\sqrt{n}c_n$
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。