タグ「関数」の検索結果

170ページ目:全2213問中1691問~1700問を表示)
秋田大学 国立 秋田大学 2011年 第1問
大小$2$個のさいころを投げて,出る目をそれぞれ$a,\ b$とする.この$a,\ b$に対し,$f(x)=x^2-ax+b,\ g(x)=x^3-(a+b)x^2+(a+1)bx-b^2$とおく.次の問いに答えよ.

(1)方程式$f(x)=0$が,実数解をもつ確率を求めよ.
(2)方程式$f(x)=0$が,整数の解を少なくとも$1$つもつ確率を求めよ.
(3)方程式$g(x)=0$が,異なる整数の解をちょうど$2$個もつ確率を求めよ.
秋田大学 国立 秋田大学 2011年 第3問
$\displaystyle f(x) = \frac{3\sqrt{3}}{4}-\sin 2x, g(x)=\frac{3\sqrt{3}}{4}-2\cos x$とする.

(1)関数$\{f(x)\}^2-\{g(x)\}^2$の不定積分を求めよ.
(2)すべての実数$x$に対して,不等式$\sin 2x \leqq a-2\cos x$が成り立つような定数$a$の中で最小の値を求めよ.
(3)定積分$\displaystyle \int_0^\pi |\{f(x)\}^2-\{g(x)\}^2|\, dx$を求めよ.
秋田大学 国立 秋田大学 2011年 第1問
次の問いに答えよ.

(1)グラフが$3$点$(-2,\ 46),\ (3,\ -4),\ (5,\ 4)$を通る$2$次関数$y=f(x)$を求めよ.
(2)(1)の$2$次関数$y=f(x)$のグラフと直線$y=-2x+6$の$2$つの交点の座標を求めよ.
(3)(2)の$2$つの交点の$x$座標をそれぞれ$p,\ q$とする.ただし,$p<q$とする.$a$を定数とするとき,$2$次関数$y=-x^2+2ax+3-a^2$の$p \leqq x \leqq q$における最大値を求めよ.
秋田大学 国立 秋田大学 2011年 第2問
大小$2$個のさいころを投げて,出る目をそれぞれ$a,\ b$とする.この$a,\ b$に対し,$f(x)=x^2-ax+b$とおく.次の問いに答えよ.

(1)方程式$f(x)=0$が,実数解をもつ確率を求めよ.
(2)方程式$f(x)=0$が,整数の解を少なくとも$1$つもつ確率を求めよ.
秋田大学 国立 秋田大学 2011年 第2問
関数$f(x)=e^x$について,次の問いに答えよ.

(1)原点から$y=f(x)$のグラフへ引いた接線の方程式を求めよ.
(2)(1)の接線の接点をP$_1$とする.点P$_1$から$x$軸に下ろした垂線と$x$軸との交点をA$_1(a_1,\ 0)$とする.このとき,点A$_1$から$y=f(x)$のグラフへ引いた接線の方程式を求めよ.
(3)(2)の接線の接点をP$_2$とする.点P$_2$から$x$軸に下ろした垂線と$x$軸との交点をA$_2(a_2,\ 0)$とする.このとき,点A$_2$から$y=f(x)$のグラフへ接線を引き,その接点をP$_3$とする.さらに,点P$_3$から$x$軸に下ろした垂線と$x$軸との交点をA$_3(a_3,\ 0)$とする.このようにして,次々に$x$軸上の点A$_1(a_1,\ 0)$,A$_2(a_2,\ 0)$,A$_3(a_3,\ 0)$,$\cdots$を得る.このとき,数列$a_1,\ a_2,\ a_3,\ \cdots$の一般項$a_n$を推定し,その推定が正しいことを数学的帰納法で証明せよ.
名古屋大学 国立 名古屋大学 2011年 第1問
次の問いに答えよ.

(1)関数$y=x^3-x^2$のグラフをかけ.
(2)曲線$y=x^3-x^2$の接線で,点$\left(\displaystyle \frac{3}{2},\ 0 \right)$を通るものをすべて求めよ.
(3)$p$を定数とする.$x$の$3$次方程式$\displaystyle y=x^3-x^2=p\left(x-\frac{3}{2}\right)$の異なる実数解の個数を求めよ.
岡山大学 国立 岡山大学 2011年 第4問
$p$を定数とする.
\[ f(x) = x^3+x^2+ px+1 \]
とおく.$y=f(x)$のグラフに傾き$1$の$2$つの異なる接線が引けるという.このとき,次の問いに答えよ.

(1)$p$の範囲を求めよ.
(2)$2$つの接点の$x$座標を$\alpha,\ \beta$とする.$(\alpha - \beta)^2$を$p$を用いて表せ.
(3)$2$つの接線の$y$軸との交点を$\mathrm{A}$,$\mathrm{B}$とするとき,線分$\mathrm{AB}$の長さを$p$を用いて表せ.
(4)$2$つの接線の間の距離が$\displaystyle \frac{8}{27}$となるような$p$の値を求めよ.
岡山大学 国立 岡山大学 2011年 第4問
$f(x) = e^{-x^2}$とする.曲線$y = f(x)$上の点A$(a,\ f(a))$における接線を$\ell$,原点$\mathrm{O}$を通り$\ell$に垂直な直線を$\ell^\prime$とし,$\ell$と$\ell^\prime$との交点を$\mathrm{P}$とする.

(1)線分$\mathrm{OP}$の長さを求めよ.
(2)$\ell$と$y$軸との交点を$\mathrm{Q}$とし,$\angle \mathrm{POQ}$を$\theta \ (0 \leqq \theta \leqq \pi)$とする.$\sin \theta$を$a$を用いて表せ.
(3)$(2)$で求めた$\sin \theta$を最大にする$a$の値と,そのときの$\sin \theta$の値を求めよ.
大阪大学 国立 大阪大学 2011年 第3問
実数の組$(p,\ q)$に対し,$f(x) = (x-p)^2 +q$とおく.

(1)放物線$y = f(x)$が点$(0,\ 1)$を通り,しかも直線$y = x$の$x > 0$の部分と接するような実数の組$(p,\ q)$と接点の座標を求めよ.
(2)実数の組$(p_1,\ q_1)$,$(p_2,\ q_2)$に対して,$f_1(x) = (x-p_1)^2 + q_1$および$f_2(x) =(x-p_2)^2 +q_2$とおく.実数$\alpha,\ \beta \ $(ただし$\alpha < \beta$)に対して
\[ f_1(\alpha) < f_2(\alpha) \quad \text{かつ} \quad f_1(\beta) < f_2(\beta) \]
であるならば,区間$\alpha \leqq x \leqq \beta$において不等式$f_1(x) < f_2(x)$がつねに成り立つことを示せ.
(3)長方形$R : 0 \leqq x \leqq 1,\ 0 \leqq y \leqq 2$を考える.また,4点P$_0(0,\ 1)$,P$_1(0,\ 0)$,P$_2(1,\ 1)$,P$_3(1,\ 0)$をこの順に線分で結んで得られる折れ線を$L$とする.実数の組$(p,\ q)$を,放物線$y = f(x)$と折れ線$L$に共有点がないようなすべての組にわたって動かすとき,$R$の点のうちで放物線$y = f(x)$が通過する点全体の集合を$T$とする.$R$から$T$を除いた領域$S$を座標平面上に図示し,その面積を求めよ.
大阪大学 国立 大阪大学 2011年 第4問
$a,\ b,\ c$を正の定数とし,$x$の関数$f(x) = x^3 +ax^2 +bx+c$を考える.以下,定数は全て実数とする.

(1)定数$p,\ q$に対し,次をみたす定数$r$が存在することを示せ.
\[ x \geqq 1 \quad \text{ならば} \quad |px+q| \leqq rx \]
(2)恒等式$(\alpha-\beta)(\alpha^2+\alpha\beta+\beta^2)=\alpha^3-\beta^3$を用いて,次をみたす定数$k,\ l$が存在することを示せ.
\[ x \geqq 1 \quad \text{ならば} \quad \left|\sqrt[3]{f(x)}-x-k \right| \leqq \frac{l}{x} \]
(3)すべての自然数$n$に対して,$\sqrt[3]{f(n)}$が自然数であるとする.このとき関数$f(x)$は,自然数の定数$m$を用いて$f(x)=(x+m)^3$と表されることを示せ.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。