タグ「関数」の検索結果

162ページ目:全2213問中1611問~1620問を表示)
大阪学院大学 私立 大阪学院大学 2012年 第2問
$\mathrm{O}$を原点とし,$y>0$であるような点$\mathrm{A}(x,\ y)$から$x$軸に下ろした垂線の足を$\mathrm{B}(x,\ 0)$とする.いま,点$\mathrm{A}$を,$\mathrm{OA}+\mathrm{AB}=c$($c$は正定数)という条件を満たすように選びたい.次の問いに答えなさい.

(1)点$\mathrm{A}$の座標$(x,\ y)$の満たすべき条件を$y=f(x)$の形の式で表しなさい.また,そのとき点$\mathrm{A}$の$x$座標のとりうる範囲も示しなさい.
(2)$c=2$とするとき,点$\mathrm{A}$の条件を満たす座標$(x,\ y)$のうち,$-1 \leqq x \leqq 1$の範囲での$x+y$の最大値と最小値を求めなさい.
大阪工業大学 私立 大阪工業大学 2012年 第3問
次の問いに答えよ.

(1)関数$f(t)=2t^3-3t^2+1 (0 \leqq t \leqq 1)$の最小値を求めよ.
(2)$(1)$を利用して,$\displaystyle 0<x<\frac{\pi}{2}$のとき,$2 \cos^3 x-3 \cos^2 x+1>0$となることを示せ.
(3)関数$g(x)=\tan x+2 \sin x-3x$を微分せよ.
(4)$\displaystyle 0<x<\frac{\pi}{2}$のとき,$\tan x+2 \sin x>3x$となることを示せ.
大阪工業大学 私立 大阪工業大学 2012年 第4問
関数$f(x)=x \sqrt{1-x} (0 \leqq x \leqq 1)$について,次の問いに答えよ.

(1)$f(x)$を微分せよ.
(2)$f(x)$の最大値を求めよ.
(3)曲線$y=f(x)$と$x$軸で囲まれた図形を,$x$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
近畿大学 私立 近畿大学 2012年 第2問
$f(x)=x^2-4x+7$とし,放物線$y=f(x)$上の$2$点$\mathrm{A}(t,\ f(t))$,$\mathrm{B}(t+a,\ f(t+a)) (a>0)$における$y=f(x)$の接線をそれぞれ$\ell_\mathrm{A}$,$\ell_\mathrm{B}$とする.また$\ell_\mathrm{A}$と$\ell_\mathrm{B}$の交点を$\mathrm{P}$とする.

(1)点$\mathrm{P}$の座標は
\[ \left( t+\frac{a}{[ア]},\ t^{[イ]}+(a-[ウ])t-[エ]a+[オ] \right) \]
である.このことから,$t$が変化するとき,点$\mathrm{P}$は曲線
\[ y=x^{[カ]}-[キ]x-\frac{a^{[ク]}}{[ケ]}+[コ] \]
上を動く.
(2)$\mathrm{AB}=\mathrm{AP}$となる実数$t$が存在するための必要十分条件は$\displaystyle a \geqq \frac{[サ]}{[シ]}$である.
近畿大学 私立 近畿大学 2012年 第2問
$f(x)=x^2-4x+7$とし,放物線$y=f(x)$上の$2$点$\mathrm{A}(t,\ f(t))$,$\mathrm{B}(t+a,\ f(t+a)) (a>0)$における$y=f(x)$の接線をそれぞれ$\ell_\mathrm{A}$,$\ell_\mathrm{B}$とする.また$\ell_\mathrm{A}$と$\ell_\mathrm{B}$の交点を$\mathrm{P}$とする.

(1)点$\mathrm{P}$の座標は
\[ \left( t+\frac{a}{[ア]},\ t^{[イ]}+(a-[ウ])t-[エ]a+[オ] \right) \]
である.このことから,$t$が変化するとき,点$\mathrm{P}$は曲線
\[ y=x^{[カ]}-[キ]x-\frac{a^{[ク]}}{[ケ]}+[コ] \]
上を動く.
(2)$\mathrm{AB}=\mathrm{AP}$となる実数$t$が存在するための必要十分条件は$\displaystyle a \geqq \frac{[サ]}{[シ]}$である.
近畿大学 私立 近畿大学 2012年 第1問
関数$f(x)$が,すべての実数$x$に対して$f(x)=2x^2-14x+\int_0^3 f(x) \, dx$をみたしているとき

(1)$\displaystyle \int_0^3 f(x) \, dx=[ア]$である.
(2)方程式$f(x)=0$の解$x_1,\ x_2 (x_1<x_2)$の値は,$x_1=[イ]$,$x_2=[ウ]$である.
(3)$a$を$a \geqq 0$をみたす実数とし,区間$a \leqq x \leqq a+1$における$f(x)$の最小値と最大値を,$a$の関数として,それぞれ,$m(a)$,$M(a)$とする.このとき$m(a)$が一定値となる$a$の区間は$[エ] \leqq a \leqq [オ]$であり,この区間で$m(a)=[カ]$である.また,$M(a) \leqq 6$をみたす$a$の区間は$[キ] \leqq a \leqq [ク]$である.
近畿大学 私立 近畿大学 2012年 第3問
$p$を実数の定数として,実数$x$の関数を$\displaystyle f(x)={25}^x+\frac{1}{{25}^x}+2p \left( 5^x+\frac{1}{5^x}-1 \right)+7$とする.$\displaystyle t=5^x+\frac{1}{5^x}$とおき,$f(x)$を$t$で表した関数を$g(t)$とおく.

(1)関数$g(t)$を求めよ.
(2)方程式$g(t)=0$が実数解を$1$個もつとき,$p$の値と解$t$の値を求めよ.
(3)方程式$g(t)=0$が次の条件をみたす$2$個の実数解$t_1,\ t_2$をもつとき,$p$がとりうる値の範囲をそれぞれ求めよ.
\[ (ⅰ) t_1<2,\ t_2>2 \quad (ⅱ) t_1=2,\ t_2>2 \quad (ⅲ) 2<t_1<t_2 \quad \tokeishi t_1<t_2<2 \]
(4)$t$を定数とみなし$\displaystyle t=5^x+\frac{1}{5^x}$を$x$の方程式とみなして,方程式$\displaystyle t=5^x+\frac{1}{5^x}$が異なる$2$つの実数解$x$をもつように$t$の値を定めるとき,$t$がとりうる値の範囲を求めよ.
(5)方程式$f(x)=0$の異なる実数解$x$の個数を,$p$の値で場合分けして求めよ.
法政大学 私立 法政大学 2012年 第3問
関数$f(x)=x^3+2x^2+x-3$について,つぎの問いに答えよ.

(1)$f(x)$の極値を求めよ.
(2)$a$を実数とする.曲線$y=f(x)$上の異なる$2$点$(a,\ f(a))$,$(-a,\ f(-a))$における接線をそれぞれ$\ell_1$,$\ell_2$とするとき,$\ell_1$と$\ell_2$の交点の軌跡を表す曲線$y=g(x)$を求めよ.
(3)曲線$y=g(x)$と$x$軸および直線$x=2$で囲まれた図形の面積を求めよ.
中央大学 私立 中央大学 2012年 第2問
次の問題文の空欄にもっとも適する答えを解答群から選び,その記号をマークせよ.ただし,同じ記号を$2$度以上用いてもよい.

$a$を$1$より大きい実数とする.$xy$平面において,$x$軸,$y$軸,直線$x=1$と曲線$y=a^x$で囲まれる部分の面積を近似的に計算したい.$n$を自然数とし,$k=1,\ 2,\ \cdots,\ n$とする.また,$f(x)$は$0 \leqq x \leqq 1$において$f(x)>0$を満たす連続関数とする.

(1)$4$点$\displaystyle \left( \frac{k-1}{n},\ 0 \right)$,$\displaystyle \left( \frac{k}{n},\ 0 \right)$,$\displaystyle \left( \frac{k}{n},\ f \left( \frac{k}{n} \right) \right)$,$\displaystyle \left( \frac{k-1}{n},\ f \left( \frac{k-1}{n} \right) \right)$を頂点にもつ台形の面積を$M_k$とする.このとき$M_k=[キ]$となる.とくに$f(x)=a^x$であれば,面積の和$S_n=M_1+M_2+\cdots +M_n$は$[ク]$となる.ここで,極限$\displaystyle \lim_{x \to 0} \frac{a^x-1}{x}=[ケ]$を用いると,$\displaystyle \lim_{n \to \infty} S_n=[コ]$と計算される.
(2)以下では,曲線$y=f(x)$は下に凸とする.
$3$点$\displaystyle \left( \frac{k-1}{n},\ f \left( \frac{k-1}{n} \right) \right)$,$\displaystyle \left( \frac{2k-1}{2n},\ f \left( \frac{2k-1}{2n} \right) \right)$,$\displaystyle \left( \frac{k}{n},\ f \left( \frac{k}{n} \right) \right)$を通る放物線を
\[ C_k:y=\alpha \left( x-\frac{2k-1}{2n} \right)^2+\beta \left( x-\frac{2k-1}{2n} \right)+\gamma \quad (\alpha,\ \beta,\ \gamma \text{は定数}) \]
とおく.$x$軸,直線$\displaystyle x=\frac{k-1}{n}$,直線$\displaystyle x=\frac{k}{n}$と放物線$C_k$で囲まれる部分の面積を$N_k$とおくとき,$N_k=[サ]$となる.とくに$f(x)=a^x$であれば,面積の和$N_1+N_2+\cdots N_n$は$[シ]$となる.
\begin{itemize}
ケ,コの解答群
\[ \begin{array}{lllll}
\marua e^a \phantom{AA} & \marub e^{-a} \phantom{AA} & \maruc \displaystyle\frac{e^a}{a-1} \phantom{AA} & \marud (a-1)e^a \phantom{AA} & \marue (a-1)e^{-a} \\ \\
\maruf \log a & \marug \displaystyle\frac{1}{\log a} & \maruh \displaystyle\frac{\log a}{a-1} & \marui \displaystyle\frac{a-1}{\log a} & \maruj (a-1) \log a
\end{array} \]
キ,サの解答群

\mon[$\marua$] $\displaystyle \frac{1}{n} \left\{ f \left( \frac{k-1}{n} \right)+f \left( \frac{k}{n} \right) \right\}$

\mon[$\marub$] $\displaystyle \frac{1}{2n} \left\{ f \left( \frac{k-1}{n} \right)+f \left( \frac{k}{n} \right) \right\}$

\mon[$\maruc$] $\displaystyle \frac{1}{3n} \left\{ f \left( \frac{k-1}{n} \right)+f \left( \frac{2k-1}{2n} \right)+f \left( \frac{k}{n} \right) \right\}$

\mon[$\marud$] $\displaystyle \frac{1}{4n} \left\{ f \left( \frac{k-1}{n} \right)+2f \left( \frac{2k-1}{2n} \right)+f \left( \frac{k}{n} \right) \right\}$

\mon[$\marue$] $\displaystyle \frac{1}{5n} \left\{ f \left( \frac{k-1}{n} \right)+3f \left( \frac{2k-1}{2n} \right)+f \left( \frac{k}{n} \right) \right\}$

\mon[$\maruf$] $\displaystyle \frac{1}{6n} \left\{ f \left( \frac{k-1}{n} \right)+4f \left( \frac{2k-1}{2n} \right)+f \left( \frac{k}{n} \right) \right\}$

ク,シの解答群
\[ \begin{array}{ll}
\marua \displaystyle\frac{(a^n-1) \sqrt{a}}{n(a-1)} \phantom{AA} & \marub \displaystyle\frac{a^{\frac{1}{2n}}(a-1)}{n(a^{\frac{1}{n}}-1)} \\ \\
\maruc \displaystyle\frac{(a+1)(a^n-1)}{n(a-1)} \phantom{AA} & \marud \displaystyle\frac{(a^{\frac{1}{n}}+1)(a-1)}{n(a^\frac{1}{n}-1)} \\ \\
\marue \displaystyle\frac{(a+1)(a^n-1)}{2n(a-1)} & \maruf \displaystyle\frac{(a^{\frac{1}{n}}+1)(a-1)}{2n(a^{\frac{1}{n}}-1)} \\ \\
\marug \displaystyle\frac{(a^{\frac{1}{n}}+a^{\frac{1}{2n}}+1)(a-1)}{n(a^\frac{1}{n}-1)} & \maruh \displaystyle\frac{(a^{\frac{1}{n}}+a^{\frac{1}{2n}}+1)(a-1)}{3n(a^\frac{1}{n}-1)} \\ \\
\marui \displaystyle\frac{(a^{\frac{1}{n}}+2a^{\frac{1}{2n}}+1)(a-1)}{4n(a^\frac{1}{n}-1)} & \maruj \displaystyle\frac{(a+3 \sqrt{a}+1)(a^n-1)}{5n(a-1)} \\ \\
\maruk \displaystyle\frac{(a^{\frac{1}{n}}+4a^{\frac{1}{2n}}+1)(a-1)}{6n(a^\frac{1}{n}-1)} &
\end{array} \]
\end{itemize}
中央大学 私立 中央大学 2012年 第4問
関数$f(x)$の第$n$次導関数を$\displaystyle \frac{d^n}{dx^n}f(x)$で表す.いま,自然数$n$に対して関数$H_n(x)$を次で定義する.
\[ H_n(x)=(-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2} \]
以下の問いに答えよ.

(1)$H_1(x),\ H_2(x),\ H_3(x)$を求めよ.
(2)導関数$\displaystyle \frac{d}{dx} H_n(x)$を$H_n(x)$と$H_{n+1}(x)$を用いて表せ.さらに,$n$に関する数学的帰納法により$H_n(x)$が$n$次多項式(整式)であることを証明せよ.
(3)$n \geqq 3$のとき,定積分
\[ S_n(a)=\int_0^a xH_n(x) e^{-x^2} \, dx \]
を$H_{n-1}(a)$,$H_{n-2}(a)$,$H_{n-2}(0)$を用いて表せ.ただし,$a$は実数とする.
(4)$n=6$のとき,極限値$\displaystyle \lim_{a \to \infty}S_6(a)$を求めよ.
必要ならば,自然数$k$に対して$\displaystyle \lim_{x \to \infty} x^k e^{-x^2}=0$が成り立つことを用いてよい.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。