タグ「関数」の検索結果

158ページ目:全2213問中1571問~1580問を表示)
神奈川大学 私立 神奈川大学 2012年 第3問
関数$\displaystyle f(x)=\log_2 8x \cdot \log_{\frac{1}{2}} \frac{4}{x}$について,以下の問いに答えよ.

(1)$t=\log_2x$とするとき,$f(x)$を$t$の関数$g(t)$として表せ.
(2)$(1)$で求めた関数を$s=g(t)$とするとき,この関数のグラフを座標平面上にえがけ.
(3)$\displaystyle \frac{1}{4} \leqq x \leqq 16$であるとき,$f(x)$の最大値,最小値とそのときの$x$の値をそれぞれ求めよ.
神奈川大学 私立 神奈川大学 2012年 第1問
次の空欄を適当に補え.

(1)方程式$8 \times 8^x+7 \times 4^x=2^x$の解は$x=[$(\mathrm{a])$}$である.
(2)$\mathrm{O}$を原点$(0,\ 0,\ 0)$とする.ベクトル$\overrightarrow{\mathrm{OP}}=(p,\ q,\ r)$が,$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 2,\ 0)$,$\mathrm{C}(0,\ 0,\ 3)$を通る平面に垂直で,$|\overrightarrow{\mathrm{OP}}|=1$,$p>0$を満たしているとき,$\overrightarrow{\mathrm{OP}}=[$(\mathrm{b])$}$である.
(3)$a_1=8$,$\displaystyle a_{n+1}=\frac{5}{4}a_n-10 (n=1,\ 2,\ 3,\ \cdots)$によって定められる数列$\{a_n\}$の一般項は$a_n=[$(\mathrm{c])$}$である.
(4)正八面体の各面に$1$から$8$の数字を$1$つずつ書いた八面体サイコロが$2$つある.この$2$つを同時に投げたとき,少なくとも$1$つは$1$の目が出る確率は$[$(\mathrm{d])$}$である.

(5)関数$\displaystyle y=\frac{\log x}{x}$は,$x=[$(\mathrm{e])$}$のとき最大値をとる.

(6)$a \neq 0$とする.方程式$x^3-(a+1)x+a=0$が$1$以外の解を重解としてもつとき,$a=[$(\mathrm{f])$}$であり,そのときの重解は$x=[$(\mathrm{g])$}$である.
関西大学 私立 関西大学 2012年 第1問
$x$の関数$\displaystyle f(x)=\frac{\log x}{x^2}$に対して,次の問いに答えよ.

(1)$f(x)$の導関数$f^\prime(x)$を求め,$f(x)$の極値を求めよ.
(2)$f(x)$の第$2$次導関数$f^{\prime\prime}(x)$を求め,さらに$f^{\prime\prime}(x)=0$を満たす$x$の値を求めよ.
(3)$x>0$において,$2 \sqrt{x}-\log x>0$を示せ.

(4)$\displaystyle \lim_{x \to \infty} \frac{\log x}{x^2}$を求めよ.

(5)$\displaystyle \lim_{a \to \infty} \int_1^a f(x) \, dx=\int_1^c f(x) \, dx$を満たす正の定数$c$を求めよ.
関西大学 私立 関西大学 2012年 第3問
関数$f(x)=|x(x+2)|$のグラフを$C$とする.次の$[ ]$をうめよ.

(1)$k$を定数とし,直線$y=x+k$を$\ell$とする.$C$と$\ell$が共有点を持たないのは,$k$の値が$[$①$]$の範囲のときである.共有点が$1$個であるのは,$k$の値が$[$②$]$のときである.共有点が$2$個であるのは,$k$の値が$[$③$]$の範囲のときであり,共有点が$3$個であるのは,$k$の値が$[$④$]$のときであり,共有点が$4$個であるのは,$k$の値が$[$⑤$]$の範囲のときである.
(2)$C$と直線$y=1$とで囲まれる部分の面積を$S$とするとき,$S$の値は$S=[$⑥$](\sqrt{2}-1)$である.
関西大学 私立 関西大学 2012年 第3問
次の$[ ]$を数値でうめよ.

放物線$y=ax^2+bx+c$の頂点の$x$座標は$\displaystyle \frac{11}{12}$であり,この放物線は$x$座標が$1$の点で直線$\displaystyle y=\frac{x}{3}+1$に接している.このとき,$a=[$①$]$,$b=[$②$]$,$c=[$③$]$である.この$a,\ b,\ c$に対し,$f(x)$を
\[ f(x)=\left\{ \begin{array}{lll}
ax^2+bx+c & & x \leqq 1 \\ \\
\displaystyle \frac{x}{3}+1 & & x>1
\end{array} \right. \]
と定め
\[ F(t)=\int_t^{t+1} f(x) \, dx \]
とおく.このとき,$F(t)$は$0 \leqq t \leqq 1$である$t$に対し
\[ F(t)=[$④$]t^3+[$⑤$]t^2-[$⑥$]t+\frac{11}{6} \]
と表される.$t$が$0 \leqq t \leqq 1$の範囲を動くとき,$F(t)$の値が最小になるのは$t=[$④chi$]$のときである.
関西大学 私立 関西大学 2012年 第4問
次の$[ ]$をうめよ.

(1)$\displaystyle \lim_{x \to -\infty}(\sqrt{x^2+3x}+x)$の値は$[$①$]$である.
(2)$\displaystyle \sum_{k=1}^n k \comb{n}{k}$を計算すると$[$②$]$となる.
(3)座標空間の原点を$\mathrm{O}$とし,$t$を実数とする.どのような$t$の値に対しても,点$\displaystyle \mathrm{P} \left( \cos t,\ \frac{-1+\sin t}{\sqrt{2}},\ \frac{1+\sin t}{\sqrt{2}} \right)$は原点を中心とする半径$[$③$]$の球面上にある.また,実数$s$に対して,点$\mathrm{Q}(0,\ s,\ -s)$とするとき,$\overrightarrow{\mathrm{OQ}} \cdot \overrightarrow{\mathrm{QP}}=0$となるような$s$の値は$s=0$と$s=[$④$]$である.
(4)媒介変数表示
\[ x=3^{t+1}+3^{-t+1}+1,\quad y=3^t-3^{-t} \]
で表される図形は,$x,\ y$についての方程式$[$⑤$]=1$で定まる双曲線$C$の$x>0$の部分である.また,$C$の漸近線で傾きが正の漸近線の方程式は$y=[$⑥$]$である.
(5)$\theta$の関数$\displaystyle \sin \theta \sin \left( \theta+\frac{\pi}{3} \right) \sin \left( \theta-\frac{\pi}{3} \right)$は,定数$a,\ b$を用いて$a \sin^3 \theta+b \sin \theta$と表すことができる.$a,\ b$の組$(a,\ b)$は$[$④chi$]$である.
(6)無限級数の和として定義される関数
\[ f(x)=x^2+\frac{x^2}{1+2x^2}+\frac{x^2}{(1+2x^2)^2}+\cdots +\frac{x^2}{(1+2x^2)^n}+\cdots \]
について,$\displaystyle \lim_{x \to 0}f(x)$の値は$[$\maruhachi$]$である.
広島修道大学 私立 広島修道大学 2012年 第1問
次の各問に答えよ.

(1)方程式$|x-2|+|3x+3|=11$を解け.
(2)連立方程式
\[ \left\{ \begin{array}{l}
x+3y=14 \\
\log_{\sqrt{2}} (x-y)=2
\end{array} \right. \]
を解け.
(3)$a,\ b,\ c$を定数とする.関数$f(x)=x^3+ax^2+bx+c$が$f(3)=16$,$f^\prime(2)=f^\prime(-2)=9$を満たすとき,$a,\ b,\ c$の値を求めよ.
(4)$(3)$で求めた関数$f(x)$の増減を調べて,極値を求めよ.
広島修道大学 私立 広島修道大学 2012年 第3問
次の問に答えよ.

(1)$a,\ m$を定数とする.関数$y=x^3+3x^2+mx+m$が区間$x \leqq a$,$a+2 \leqq x$で増加し,区間$a \leqq x \leqq a+2$で減少するように$a$と$m$の値を定めよ.
(2)不等式$(x^{\log_3 x})^2+x^{5 \log_x3}-84 x^{\log_3x}<0$を解け.
広島修道大学 私立 広島修道大学 2012年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)連立不等式
\[ \left\{ \begin{array}{l}
\displaystyle \frac{1}{3}x-7 \leqq 2 \\ \\
\displaystyle \frac{3}{2}x+3>-\frac{3}{4}x+1
\end{array} \right. \]
の解は$[$1$]$である.
(2)$2$点$(5,\ 1)$,$(-2,\ 4)$を通る直線の方程式は$[$2$]$である.
(3)直線$y=ax-3$が放物線$y=x^2-4x+3a$の接線であるとき,定数$a$の値は$[$3$]$である.
(4)$\displaystyle \sqrt{3} \sin \frac{\pi}{4}-\sqrt{6} \cos \frac{\pi}{3}$の値は$[$4$]$,$\displaystyle \sin \frac{\pi}{9} \sin \frac{\pi}{18}-\cos \frac{\pi}{9} \cos \frac{\pi}{18}$の値は$[$5$]$である.
(5)赤玉が$4$つ,青玉が$3$つ,黄玉が$2$つある.これらすべての玉を$1$列に並べる並べ方は$[$6$]$通りである.これらの玉をすべて$1$つの袋に入れ,そのうち$3$つを同時に取り出すとき,異なる色の玉を取り出す確率は$[$7$]$であり,赤玉$2$つ,青玉$1$つを取り出す確率は$[$8$]$である.また,すべての玉が入った袋から玉を$4$つ同時に取り出すとき,青玉が少なくとも$1$つ含まれる確率は$[$9$]$である.
(6)$2$次関数$f(x)$は,$\displaystyle x=-\frac{3}{4}$で極値をとり,$f(-1)=-2$,$f^\prime(2)=11$を満たす.このとき,$f(x)=[$10$]$であり,$\displaystyle \int_{-1}^2 f(x) \, dx$の値は$[$11$]$である.
広島修道大学 私立 広島修道大学 2012年 第3問
$2$次関数$f(x)=x^2-4x+2$について次の問に答えよ.

(1)放物線$y=f(x)$の頂点の座標を求めよ.また,この放物線と$x$軸との交点の座標を求めよ.
(2)$a$を実数とするとき,$a \leqq x \leqq a+2$における関数$f(x)$の最大値,最小値を求めよ.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。