タグ「関数」の検索結果

157ページ目:全2213問中1561問~1570問を表示)
東京理科大学 私立 東京理科大学 2012年 第1問
$a,\ b$を実数として,$x$の$4$次関数$f(x)=x^4-ax^2+bx$を考える.次の問いに答えよ.

(1)$s,\ t$を異なる実数とする.曲線$y=f(x)$の,$x=s$における接線の傾きと,$x=t$における接線の傾きが等しいとき,$a$を$s$と$t$を用いて表せ.
(2)曲線$y=f(x)$が異なる$2$点で共通の接線$\ell$をもつとし,その接点の$x$座標の一つを$s$とする.

(i) $a$を$s$を用いて表せ.
(ii) $\ell$の方程式を,$a$と$b$を用いて表せ.

(3)関数$f(x)$が極大値をもつための必要十分条件を$a$と$b$に関する不等式で与えよ.
東京理科大学 私立 東京理科大学 2012年 第3問
自然数$n=1,\ 2,\ 3,\ \cdots$に対し,$x>0$で定義された関数$f_n(x)$を
\[ f_n(x)=\frac{\log x}{x^n} \quad (x>0) \]
で定める.ただし,$\log$は自然対数を表す.

$t>1$とするとき,座標平面において曲線$y=f_n(x)$の$x \leqq t$の部分,$x$軸,直線$x=t$の$3$つで囲まれている図形の面積を$S_n(t)$とする.また,$4$点$(1,\ 0)$,$(t,\ 0)$,$(t,\ f_n(t))$,$(1,\ f_n(t))$を頂点とする長方形の面積を$T_n(t)$とする.

(1)関数$f_n(x)$が極大となるときの$x$の値と,そのときの$f_n(x)$の極大値を求めよ.
(2)$t$が$t>1$を動くとき,$T_n(t)-S_n(t)$が最大となる$t$の値を求めよ.
(3)$S_1(t)$と$S_n(t) (n \geqq 2)$を求めよ.
(4)各$n \geqq 2$に対して$T_n(t)=S_n(t)$となる$t (t>1)$がただ$1$つあることを示せ.ただし,$\displaystyle \lim_{x \to \infty} \frac{\log x}{x}=0$となることを用いてもよい.
日本女子大学 私立 日本女子大学 2012年 第2問
次の問いに答えよ.

(1)関数$f(x)=xe^{-2x}$の極値と曲線$y=f(x)$の変曲点の座標を求めよ.
(2)曲線$y=f(x)$上の変曲点における接線,曲線$y=f(x)$および直線$x=3$で囲まれた部分の面積を求めよ.
東京理科大学 私立 東京理科大学 2012年 第2問
以下の問いに答えなさい.

(1)関数$\displaystyle f(x)=\frac{1}{3} \cos 3x-\frac{1}{2} \cos 2x+\cos x (0<x<\pi)$について考える.

(i) $\displaystyle x=\frac{\pi}{12}$のとき,$f(x)$の値$\displaystyle f \left( \frac{\pi}{12} \right)$を求めなさい.
(ii) 関数$f(x)$の極値を求めなさい.

(2)行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$によって表される座標平面上の点の移動($1$次変換)$f$が条件

「点$\mathrm{P}(x,\ y)$が直線$y=-x+1$上にあるとき,点$\mathrm{P}(x,\ y)$の$f$による像$\mathrm{P}^\prime(x^\prime,\ y^\prime)$はつねに直線$\displaystyle y=-\frac{2}{3}x+\frac{7}{3}$上にある.また,点$\mathrm{P}(x,\ y)$が直線$y=2x-1$上にあるとき,点$\mathrm{P}(x,\ y)$の$f$による像$\mathrm{P}^\prime(x^\prime,\ y^\prime)$はつねに直線$x=1$上にある」

を満たすとき,$A$を求めなさい.
金沢工業大学 私立 金沢工業大学 2012年 第2問
$a,\ b,\ c$を定数とする.関数$\displaystyle f(x)=\frac{ax+b}{x^2+c}$は$x=2$,$x=4$で極値をとり,$f(0)=3$を満たす.

(1)$a=[ク]$,$b=[ケコサ]$,$c=[シス]$である.
(2)関数$f(x)$は$x=[セ]$で極大値$[ソ]$をとり,$x=[タ]$で極小値$[チ]$をとる.
金沢工業大学 私立 金沢工業大学 2012年 第3問
$a,\ b,\ c,\ d$を定数とし,$ab \neq 0$とする.関数$f(x)=ae^{bx}+cx+d$は等式
\[ f(x)+2 \int_0^x f(t) \, dt=4x^2+8x+10 \]
を満たしている.

(1)$a=[ア]$,$b=[イウ]$,$c=[エ]$,$d=[オ]$である.
(2)$\displaystyle \int_0^1 f(x) \, dx=[カ]-[キ]e^{[クケ]}$である.
金沢工業大学 私立 金沢工業大学 2012年 第4問
関数$\displaystyle y=3 \log_8x+4 \log_4 4x-(\log_2x)^2 \left( \frac{1}{2} \leqq x \leqq 32 \right)$について考える.$t=\log_2x$とおく.

(1)$t$のとり得る値の範囲は$[クケ] \leqq t \leqq [コ]$である.
(2)$y=-t^2+[サ]t+[シ]$である.
(3)$y$は$x=[ス] \sqrt{[セ]}$で最大値$\displaystyle \frac{[ソタ]}{[チ]}$をとり,$x=[ツテ]$で最小値$[トナ]$をとる.
金沢工業大学 私立 金沢工業大学 2012年 第6問
$a,\ b$を定数とする.関数$f(x)=6x^2+2ax+b$は$\displaystyle \int_0^1 f(x) \, dx=4$,$f(2)=2$を満たす.このとき,

(1)$a=[コサ]$,$b=[シス]$である.
(2)$x$軸と関数$y=f(x)$のグラフで囲まれた図形の面積は$\displaystyle \frac{[セ]}{[ソタ]}$である.
東京理科大学 私立 東京理科大学 2012年 第2問
$a$を実数とし,関数$f(x)=x^3+3ax^2+(3a^2-a)x$について考える.方程式$f(x)=0$の異なる実数解の個数を$k$とする.$f(0)=0$であることに注意せよ.

(1)$k=1$となるような$a$の値の範囲を求めよ.
(2)$k=2$となるような$a$の値を求めよ.
(3)$k=3$となるような$a$の値の範囲を求めよ.
(4)$a$は$(3)$で求めた範囲にあるとする.方程式$f(x)=0$の$0$以外の実数解を$\alpha,\ \beta$とおく.ただし,$\alpha<\beta$とする.

(i) $\alpha<0$であることを示せ.
(ii) $\alpha<\beta<0$であるような$a$の値の範囲を求めよ.
(iii) $\alpha<0<\beta$であるような$a$の値の範囲を求めよ.

(5)関数$f(x)$が極大値と極小値をもつような$a$の値の範囲を求めよ.
(6)$a$が$(5)$で求めた範囲にあるとき,関数$f(x)$の極小値を$m(a)$とおく.$a$が$(5)$で求めた範囲を動くときの$m(a)$の最大値と,最大値を与える$a$の値を求めよ.
神奈川大学 私立 神奈川大学 2012年 第2問
関数$f(x)=x^3-16x-2$について,以下の問いに答えよ.

(1)曲線$y=f(x)$を$y$軸方向に$6$だけ平行移動すると曲線$y=g(x)$となる.$g(x)$を求めよ.
(2)曲線$y=f(x)$を$x$軸方向に$2$だけ平行移動すると曲線$y=h(x)$となる.$h(x)$を求めよ.
(3)$y=g(x)$のグラフと$y=h(x)$のグラフの交点の座標を求めよ.
(4)$y=g(x)$のグラフと$y=h(x)$のグラフに囲まれた部分の面積を求めよ.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。