タグ「関数」の検索結果

156ページ目:全2213問中1551問~1560問を表示)
西南学院大学 私立 西南学院大学 2012年 第4問
以下の問に答えよ.

(1)関数$f(x)=2^2 \cdot 2^x+2^{-x}$の最小値は$[ハ]$である.
(2)関数$g(x)=16 \cdot 4^x+4^{-x}-40 \cdot 2^x-10 \cdot 2^{-x}+40$は,$x=[ヒフ]$または$[ヘ]$のとき最小値$[ホ]$をとる.ただし,$[ヒフ]<[ヘ]$である.
西南学院大学 私立 西南学院大学 2012年 第5問
$a$を実数とするとき,$2$次関数
\[ f(x)=x^2+(3-2a)x+2a \]
について,以下の問に答えよ.

(1)$y=f(x)$のグラフの頂点の座標を求めよ.
(2)$-1 \leqq x \leqq 1$でつねに$f(x) \geqq 0$となるときの$a$の値の範囲を求めよ.
(3)$a$は$(2)$で求めた値の範囲を動くものとする.$-1 \leqq x \leqq 1$における$f(x)$の最小値を$m$とするとき,$m$を$a$で表せ.また,$m$を$a$の関数とみるとき,この関数のグラフを図示せよ.
中央大学 私立 中央大学 2012年 第3問
正の実数$a$に対し,
\[ f(x)=-x^2+2ax+a \quad (-1 \leqq x \leqq 1) \]
と定め,$f(x)$の最大値を$M(a)$とする.このとき以下の設問に答えよ.

(1)$M(a)$を求めよ.
(2)$\displaystyle L(a)=M(a)-\frac{a^3}{3} (a>0)$とする.$L(a)$の最大値を求めよ.
中央大学 私立 中央大学 2012年 第3問
$f(x)=x^2+x+1$とおく.曲線$y=f(x)$に原点から引いた接線の方程式を$y=mx$,$y=m^\prime x (m<m^\prime)$とおく.また,それぞれの接点の$x$座標を$c,\ c^\prime$とおく.このとき,$c<0<c^\prime$である.実数$a$に対して連立不等式
\[ y \leqq f(x),\quad y \geqq mx,\quad y \geqq m^\prime x,\quad a \leqq x \leqq a+1 \]
の表す領域の面積を$S(a)$で表す.このとき,次の問に答えよ.

(1)定数$m,\ m^\prime,\ c,\ c^\prime$を求めよ.
(2)$0<a \leqq c^\prime$のとき,$S(a)$を求めよ.
(3)$c \leqq a \leqq 0$のとき,$S(a)$を求めよ.
(4)$c \leqq a \leqq c^\prime$のとき,$S(a)$の最大値と最小値を求めよ.
中央大学 私立 中央大学 2012年 第1問
次の各問いに答えよ.

(1)次の式を展開せよ.
\[ (x+1)(x-1)(2x+3)(3x-1) \]
(2)$m$は自然数である.$x$についての$2$次方程式
\[ x^2-2mx+6m-8=0 \]
が,実数解を持たないとき,$m$の値を求めよ.
(3)$0^\circ \leqq \theta \leqq 360^\circ$において,次の関数の最大値と最小値を求めよ.
\[ y=2 \sin^2 \theta+\cos \theta-2 \]
(4)次の定積分の値を求めよ.
\[ \int_1^2 (3x^2+4x+2) \, dx \]
(5)大小$2$つのさいころを投げ,出た目の数をそれぞれ$a,\ b$とするとき,$|a-b| \geqq 3$となる確率を求めよ.
(6)半径$r$の球の体積$\displaystyle V=\frac{4 \pi r^3}{3}$を,$r$で微分して,導関数$V^\prime$を求めよ.これは,半径$r$の球の何を表しているか.
中央大学 私立 中央大学 2012年 第2問
$2$次関数や$3$次関数$y=f(x)$から新しい関数$F(x)$を次のように作る.

実数$x$に対して,$f(\alpha)=f(x)$を満たす最大の$\alpha$をとり
\[ F(x)=\alpha-x \]
と定める.

例えば,$f(x)=x^2$の場合,実数$x$に対して$\alpha$の方程式$f(\alpha)=f(x)$は$\alpha^2=x^2$であり,$\alpha=\pm x$となる.したがって,その$2$つの$\alpha$のうち大きい方をとれば次を得る.

$x<0$のとき$\alpha=-x$により$F(x)=\alpha-x=-2x=2 |x|$
$x \geqq 0$のとき$\alpha=x$により$F(x)=\alpha-x=0$

以下では$f(x)=x^3-3b^2x (b>0)$に対して,上の操作で定めた関数$F(x)$を考える.

(1)$F(-b),\ F(0),\ F(b)$の値を求めよ.
(2)$F(x)=0$となる$x$の範囲を求めよ.また$F(x)>0$となる$x$の範囲を求めよ.
(3)$F(x)>0$となる$x$に対し,$f(\alpha)=f(x)$を満たす最大の$\alpha$を$x$の式で表せ.
(4)関数$y=F(x)$を求め,そのグラフの概形をかけ.また$F(x)$の最大値を求めよ.
中央大学 私立 中央大学 2012年 第2問
$\mathrm{O}$を$xy$平面の原点とする.以下の設問に答えよ.

(1)$xy$平面上の点$\mathrm{A}(a_1,\ a_2)$と点$\mathrm{B}(b_1,\ b_2)$を考える.
\[ a_1>0,\quad a_2>0,\quad b_1>0,\quad b_2<0 \]
であるとき,$\triangle \mathrm{AOB}$の面積を$a_1,\ a_2,\ b_1,\ b_2$を用いて表せ.
(2)対数関数
\[ f(x)=\log_2x,\quad g(x)=\log_{\frac{1}{4}}x \]
に対し,$xy$平面上の曲線
\[ \begin{array}{ll}
C_1:y=f(x) & (x \geqq 1) \\
C_2:y=g(x) & (x \geqq 1)
\end{array} \]
を考える.$C_1$上に点$\mathrm{S}(s,\ f(s))$,$C_2$上に点$\mathrm{T}(t,\ g(t))$をとる.ただし,$s \cdot t=8$とする.このとき$s$を用いて,$\triangle \mathrm{SOT}$の面積$H(s)$を表せ.
(3)$(2)$の$H(s)$に対し,$H(3)$と$H(4)$の大小を比較せよ.
中央大学 私立 中央大学 2012年 第4問
$\displaystyle f(x)=\sin \left( \log \frac{1}{x} \right) (0<x \leqq 1)$とおく.$f(x)=0$となるすべての$x$を,大きい順に$a_0,\ a_1,\ a_2,\ \cdots$とする.以下の問いに答えよ.

(1)$a_n (n=0,\ 1,\ 2,\ \cdots)$を求めよ.
(2)正の定数$a,\ b$に対し
\[ \frac{d}{dx} (Ae^{-ax} \cos bx+Be^{-ax} \sin bx)=e^{-ax} \cos bx \]
を満たす定数$A,\ B$を求め,不定積分
\[ \int e^{-ax} \cos bx \, dx \]
を求めよ.
(3)$\displaystyle b_n=\int_{a_{n+1}}^{a_n} \{f(x)\}^2 \, dx (n=0,\ 1,\ 2,\ \cdots)$を,$\displaystyle t=\log \frac{1}{x}$とおくことにより求めよ.
(4)$(3)$で得られた数列$\{b_n\}$に対し,無限級数$\displaystyle \sum_{n=0}^\infty b_n$の和を求めよ.
慶應義塾大学 私立 慶應義塾大学 2012年 第1問
以下の文章の空欄に適切な数,式または行列を入れて文章を完成させなさい.ただし$(2)$において,適切な行列が複数個ある場合は,それらをすべて記入しなさい.

(1)$a_1=1$,$a_2=4$,$a_{n+2}=-a_{n+1}+2a_n (n=1,\ 2,\ 3,\ \cdots)$によって定められる数列$\{a_n\}$の一般項は$a_n=[あ]$である.
(2)行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$の表す$1$次変換により点$\mathrm{B}(1,\ 1)$と点$\mathrm{C}(1,\ 0)$はそれぞれ点$\mathrm{B}^\prime$と点$\mathrm{C}^\prime$に移されるとする.また$\mathrm{O}(0,\ 0)$を原点とする.$\overrightarrow{\mathrm{OB}^\prime}=2 \overrightarrow{\mathrm{OB}}$,かつ$\triangle \mathrm{OB}^\prime \mathrm{C}^\prime$が正三角形となるような行列$A$をすべて求めると$A=[い]$である.
(3)媒介変数$t$を用いて
\[ \left\{ \begin{array}{l}
x=\displaystyle \frac{e^t+3e^{-t}}{2} \\ \\
y=e^t-2e^{-t}
\end{array} \right. \]
と表される曲線$C$の方程式は
\[ [う]x^2+[え]xy+[お]y^2=25 \]
である.
また曲線$C$の接線の傾きは,$t=[か]$に対応する点において$-2$となる.
(4)$\alpha>1$を実数とする.$0 \leqq x \leqq 1$を定義域とする関数$f(x)=x-x^\alpha$が最大値をとる点を$x(\alpha)$とすると$x(\alpha)=[き]$である.また$\displaystyle \lim_{\alpha \to 1+0} x(\alpha)=[く]$である.
慶應義塾大学 私立 慶應義塾大学 2012年 第4問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

(1)$\displaystyle 0 \leqq \alpha<\beta \leqq \frac{\pi}{2}$かつ$R>0$とする.極座標$(r,\ \theta)$に関する条件
\[ 0 \leqq r \leqq R,\quad \alpha \leqq \theta \leqq \beta \]
により定まる図形を$x$軸のまわりに回転させて得られる立体の体積を$T$とする.$T$を$\alpha,\ \beta,\ R$を用いた式で表すと
\[ T=[あ] \]
である.
(2)極方程式$r=f(\theta) (0 \leqq \theta \leqq \alpha)$で表される曲線$C$と,$\theta=\alpha$で表される直線$\ell$および$x$軸の正の部分で囲まれた図形を$S$とする.ただし$\displaystyle 0<\alpha<\frac{\pi}{2}$とし,関数$f(\theta)$は連続かつ$f(\theta)>0$をみたし,$0 \leqq \theta \leqq \alpha$において増加または減少または定数とする.
$S$を$x$軸のまわりに回転させて得られる立体の体積を$V(\alpha)$とすると
\[ \frac{d}{d\alpha}V(\alpha)=[い] \]
であり,したがって
\[ V(\alpha)=[う] \]
である.また$S$を直線$\ell$のまわりに回転させて得られる立体の体積を$W(\alpha)$とすると
\[ W(\alpha)=[え] \]
である.
(3)$(2)$において$f(\theta)=\sqrt[3]{\cos \theta}$とするとき$\displaystyle V \left( \frac{\pi}{4} \right)$,$\displaystyle W \left( \frac{\pi}{4} \right)$の値を求めると
\[ V \left( \frac{\pi}{4} \right)=[お],\quad W \left( \frac{\pi}{4} \right)=[か] \]
である.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。