タグ「関数」の検索結果

151ページ目:全2213問中1501問~1510問を表示)
明治大学 私立 明治大学 2012年 第1問
次の各設問の$[1]$から$[9]$までの空欄にあてはまる数値を入れよ.

(1)関数$\displaystyle y=3 \sin \left( 2x- \frac{2}{3} \pi \right)$のグラフは$y=3 \sin 2x$のグラフを$x$軸方向に$[1]$だけ平行移動したものであり,その正で最小の周期は$[2]$である.
(2)座標平面上の$\triangle \mathrm{ABC}$において,線分$\mathrm{AB}$を$2:1$に内分する点$\mathrm{P}$の座標が$(1,\ 5)$,線分$\mathrm{AC}$を$4:1$に外分する点$\mathrm{Q}$の座標が$(3,\ -3)$,$\triangle \mathrm{ABC}$の重心の座標が$(0,\ 2)$であるとき,点$\mathrm{A}$の座標は$([3],\ [4])$である.
(3)関数$\displaystyle y=\left( \log_3 \frac{x}{9} \right)^3 + 6\log_{\frac{1}{3}} \sqrt{3x} (1 \leqq x \leqq 27)$の最小値は$[5]$,最大値は$[6]$である.また,最大値$[6]$をとるときの$x$は$[7]$である.
(4)水を満たしたある容器の底に穴を開けてから$x$分後における容器内の水深を$y$メートルとすると,$y$は次式で表される.ただし,$0 \leqq x \leqq 90$とする.
\[ y = 0.9 \times 10^{-4}x^2 - 1.8\times 10^{-2} x +1 \]
$x_1$分から$x_2$分の間に,容器から出た水の量を$\int_{x_1}^{x_2} y\, dx$とする.最初の$1$分間($x_1=0,\ x_2=1$)に出た水の量に対する$5$分から$6$分の間($x_1=5,\ x_2=6$)に出た水の量の割合は約$[8] \%$である.容器内の水深$y$が,$x=0$のときの半分になるのは約$[9]$分後である.
東京慈恵会医科大学 私立 東京慈恵会医科大学 2012年 第1問
次の問いに答えよ.問い$(1)$~$(3)$については,$[ ]$にあてはまる適切な数値を記入せよ.

(1)$x$の$2$次不等式
\[ 6x^2-(16a+7)x+(2a+1)(5a+2) < 0 \]
をみたす整数$x$が$10$個となるように,正の整数$a$の値を定めると$[ア]$である.
(2)三角形$\mathrm{ABC}$において,$\mathrm{AB}=\sqrt{2}$,$\mathrm{BC}=2$,$\mathrm{CA}=\sqrt{3}$とし外心を$\mathrm{O}$とする.このとき,$\overrightarrow{\mathrm{AO}}=s\overrightarrow{\mathrm{AB}}+t\overrightarrow{\mathrm{AC}}$をみたす実数$s,\ t$の値は$s=[イ],\ t=[ウ]$である.
(3)袋$\mathrm{A}$には赤玉$2$個と白玉$1$個,袋$\mathrm{B}$には赤玉$1$個と白玉$2$個が入っている.袋$\mathrm{A}$から玉を$2$個取り出して袋$\mathrm{B}$に入れ,よくかき混ぜて,袋$\mathrm{B}$から玉を$2$個取り出して袋$\mathrm{A}$に入れる.このとき,袋$\mathrm{A}$に入っている白玉の個数を$X$とすると,$X=0$となる確率は$[エ]$であり,$X=2$となる確率は$[オ]$である.
(4)関数$f(x)=|x^3|$が$x=0$で微分可能であるかどうか調べよ.
東京慈恵会医科大学 私立 東京慈恵会医科大学 2012年 第2問
$a$を実数とする.$xy$平面上の$2$曲線

\qquad $C_1: y=e^x, \quad C_2: y=-e^{1-x}+a$
を考える.
$C_1$上の点$\mathrm{P}(t,\ e^t) (t>0)$における$C_1$の接線$\ell_t$が,$C_2$上の点$\mathrm{Q}(s,\ -e^{1-s}+a)$における$C_2$の接線にもなっているとき,次の問いに答えよ.ただし,$e$は自然対数の底である.
(1)$t$と$s$の関係式を求めよ.また,$a$を$t$を用いて表せ.
(2)$C_1,\ \ell_t$および$y$軸で囲まれた部分の面積を$S_1(t)$とし,$C_2,\ \ell_t$および$y$軸で囲まれた部分の面積を$S_2(t)$とする.ただし,$\mathrm{Q}$が$y$軸上にあるときは$S_2(t)=0$とする.

(i) $S_1(t),\ S_2(t)$を$t$を用いて表せ.
(ii) $S(t)=S_1(t)+S_2(t)$とする.$t$が$t>0$の範囲を動くとき,$t$の関数$S(t)$の最小値を求めよ.
上智大学 私立 上智大学 2012年 第1問
次の空欄に適する数,数式を入れよ.

(1)$f(x)=|2 \sin x-\cos 2x+\displaystyle\frac{1|{2}}$とおく.$\sin x=[ア]$のとき$f(x)$は最大値$\displaystyle\frac{[イ]}{[ウ]}$をとる.また,$\sin x = \displaystyle\frac{[エ]+\sqrt{[オ]}}{[カ]}$のとき$f(x)$は最小値[キ]をとる.
(2)$x,\ y,\ z$は次の条件を満たす実数とする.
\[ 0 \leqq x \leqq y \leqq z \leqq \frac{4}{5}, \quad x+2y+z = 1 \]
このとき,$y$の最小値は$\displaystyle\frac{[ク]}{[ケ]}$,最大値は$\displaystyle\frac{[コ]}{[サ]}$である.
(3)不等式
\[ \log_2 x - 6\log_x 2 \geqq 1 \]
の解は
\[ \frac{[シ]}{[ス]} \leqq x < [セ], \quad x \geqq [ソ] \]
である.
上智大学 私立 上智大学 2012年 第1問
$x$の$3$次式$f(x)=ax^3+bx^2+cx+d$は,$0 \leqq \theta \leqq \displaystyle\frac{\pi}{2}$において
\[ f(\cos \theta) = \cos 3\theta - \sqrt{3} \cos 2\theta \]
を常に満たすとする.

(1)$a=[ア],\ b=[イ]\sqrt{[ウ]},\ c=[エ],\ d=\sqrt{[オ]}$である.
(2)$0 \leqq \theta \leqq \displaystyle\frac{\pi}{2}$において,$\cos 3\theta - \sqrt{3}\cos 2\theta$は
\[ \theta = \frac{[カ]}{[キ]}\pi \text{のとき最小値} \frac{[ク]}{[ケ]}\sqrt{[コ]} \text{をとり,} \]
\[ \theta = \frac{[サ]}{[シ]}\pi \text{のとき最大値} \sqrt{[ス]} \text{をとる.} \]
(3)$0 \leqq \theta \leqq \displaystyle\frac{\pi}{2}$において,
\[ \cos 3\theta - \sqrt{3}\cos 2\theta \geqq \alpha\cos \theta + \sqrt{3} \]
が常に成り立つような$\alpha$の最大値は$\displaystyle\frac{[セ]}{[ソ]}$である.
(4)$0 \leqq \theta \leqq \displaystyle\frac{\pi}{2}$において,
\[ \cos 3\theta - \sqrt{3}\cos 2\theta \leqq \beta\cos \theta + \sqrt{3} \]
が常に成り立つような$\beta$の最小値は$[タ]+[チ]\sqrt{[ツ]}$である.
明治大学 私立 明治大学 2012年 第2問
次の空欄$[ア]$から$[オ]$に当てはまるものをそれぞれ入れよ.ただし,$e$は自然対数の底である.必要ならば$\displaystyle \lim_{x \to \infty} \frac{x}{e^x}=0.\ \lim_{x \to \infty} \frac{x^2}{e^x}=0$を用いてもよい.

関数$\displaystyle f(x) = \frac{(x+1)^2}{e^x}$を考える.

(1)$f(x)$は$x=[ア]$において最小値[イ]をとる.
(2)$k$を定数とする.$x$についての方程式$f(x) = k$が二つの実数解をもつとき,$k=[ウ]$である.
(3)曲線$y=f(x)$の変曲点の$x$座標は
$[エ]-\sqrt{[オ]}, \quad [エ]+\sqrt{[オ]}$
である.
立教大学 私立 立教大学 2012年 第1問
次の空欄$[ア]$から$[コ]$に当てはまる数または式を記入せよ.

(1)方程式$(x+3)|x-4|+2x+6=0$の解は$x=[ア]$である.
(2)曲線$y=x^3-3x^2+1$上の点$(1,\ -1)$における接線が,放物線$y=ax^2+a$と接するとき,$a=[イ]$である.ただし,$a>0$とする.
(3)$\displaystyle\frac{1}{2-i}+\frac{1}{3+i}=a+bi$となる実数$a,\ b$を求めると,$a=[ウ]$,$b=[エ]$である.ただし,$i$は虚数単位とする.
(4)白玉$4$個と赤玉$2$個が入っている袋がある.この袋から同時に玉を$3$個とりだすとき,白玉の数がちょうど$2$個である確率は$[オ]$である.
(5)$\displaystyle\tan \theta=\frac{1}{2}$のとき,$\displaystyle\frac{\sin \theta}{1+\cos \theta} = [カ]$である.ただし,$\displaystyle 0 < \theta < \frac{\pi}{2}$とする.
(6)実数$x$が$x>1$の範囲を動くとき,$\log_3 x + 3\log_x 3$の最小値は$[キ]$である.
(7)関数$f(x)$が実数$a$に対して,等式$\displaystyle\int_a^x f(t)\, dt = x^3+x^2-6x-a^2-9$を満たすとき,$a$の値は$[ク]$である.
(8)$\triangle \mathrm{ABC}$の辺$\mathrm{BC}$上に点$\mathrm{D}$があり,$\triangle \mathrm{ABD}$と$\triangle \mathrm{ACD}$の面積の比が$3:2$であるとき,$\overrightarrow{\mathrm{AD}} = [ケ]\overrightarrow{\mathrm{AB}}+[コ]\overrightarrow{\mathrm{AC}}$である.
上智大学 私立 上智大学 2012年 第1問
次の各問に答えよ.

(1)関数$f(x)$を
\[ f(x) = \log_4 32x - \log_8 64x + \log_{16} 8x\]
とする.$5 \leqq f(x) \leqq 10$となるためにの必要十分条件は
\[ 2^a \leqq x \leqq 2^b,\quad a=[ア],\ b=[イ] \]
である.
(2)関数$g(x)$を
\[ g(x) = 4\cos^2 \frac{x}{2} +2\sin^2\frac{x}{2} +\sqrt{3}\sin x \]
とする.$0 \leqq x < 2\pi$とすると,$\displaystyle x=\frac{[ウ]}{[エ]}\pi$のとき$g(x)$は最大値をとる.
(3)$m$と$n$を$m \geqq n$を満たす正の整数とする.3辺の長さがそれぞれ$m+1,\ m,\ n$であり,それらの和が100以下であるような直角三角形は,全部で[オ]個ある.また,そのうち面積が最も大きいものの斜辺の長さは[カ]である.
立教大学 私立 立教大学 2012年 第2問
関数$\displaystyle y=\frac{1}{x}$のグラフの$x>0$の部分を曲線$C$とする.実数$t$は$0<t<1$をみたすものとし,$C$上に点P$\displaystyle \left(t,\ \frac{1}{t} \right)$をとる.このとき,次の問(1)~(5)に答えよ.

(1)曲線$C$上の点$\mathrm{A}(1,\ 1)$における接線$\ell$の方程式を求めよ.
(2)点$\mathrm{P}$を通り直線$\ell$と平行な直線を$m$とし,直線$m$と曲線$C$の共有点で点$\mathrm{P}$と異なる点を$\mathrm{Q}$とする.点$\mathrm{Q}$の座標を求めよ.
(3)原点を$\mathrm{O}$とし,$2$つの線分$\mathrm{OP}$,$\mathrm{OQ}$および曲線$C$で囲まれた部分の面積を$S$とする.面積$S$を$t$で表せ.
(4)点$\mathrm{P}$を通り$y$軸に平行な直線,点$\mathrm{Q}$を通り$y$軸に平行な直線,曲線$C$,および$x$軸で囲まれた部分が,$x$軸のまわりに$1$回転してできる回転体の体積を$V$とする.体積$V$を$t$で表せ.
(5)$\displaystyle \lim_{t \to 1-0} \frac{S}{V}$を求めよ.
法政大学 私立 法政大学 2012年 第2問
$f(x)=x^2-5$として,数列$\{a_n\}$を次のように定義する.\\
\quad $a_1=3$,点$(a_n,\ f(a_n))$における曲線$y=f(x)$の接線が$x$軸と交わる点の$x$座標を$a_{n+1}$とする$(n=1,\ 2,\ 3,\ \cdots)$。\\
\quad 次の問いに答えよ.

(1)$a_{n+1}$を$a_n$で表せ.
(2)命題$P(n)$を$\lceil \sqrt{5} < a_{n+1} < a_n \rfloor$とするとき,すべての正の整数$n$に対して$P(n)$が成り立つことを数学的帰納法によって証明せよ.
(3)次の不等式が共に成り立つ1より小さい正の数$r$が存在することを示せ.

(4)$a_{n+1}-\sqrt{5} \leqq r(a_n-\sqrt{5}) \quad (n=1,\ 2,\ 3,\ \cdots)$
(5)$a_n -\sqrt{5} \leqq r^{n-1} \quad (n= 1,\ 2,\ 3,\ \cdots)$
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。