タグ「関数」の検索結果

149ページ目:全2213問中1481問~1490問を表示)
鳥取大学 国立 鳥取大学 2012年 第3問
連続な関数$f(x)$が以下の式を満たすとき,次の問いに答えよ.
\[ \int_a^x (x-t)f(t) \, dt=\cos (ax)-b \]
ただし$a,\ b$は定数で$0<a<2$とする.

(1)定数$a,\ b$の値を求めよ.
(2)$f(x)$を求めよ.
(3) $f(x)$が最大値を取るときの$x$の値を求めよ.
早稲田大学 私立 早稲田大学 2012年 第5問
実数$a$に対して関数$f(a)$を,
\[ f(a) = \int_1^2 \left|\frac{a}{x}-1\right|\, dx \]
と定める.$a$が$1 \leqq a \leqq 2$の範囲を動くとき,$f(a)$の最小値は$[ナ]+[ニ]\sqrt{[ヌ]}$であり,最大値は$[ネ]+[ノ]\log [ハ]$である.ただし,[ヌ],[ハ]はできるだけ小さな自然数で答えること.
早稲田大学 私立 早稲田大学 2012年 第1問
$[ア]$~$[エ]$にあてはまる数または式を解答用紙の所定欄に記入せよ.

(1)次の等式
\[ \log_3x - \frac{1}{\log_9x} = (-1)^x \]
を満たす正の整数$x$の値は$[ア]$である
(2)定数関数でない関数$f(x)$が
\[ f(x) = x^2 - \int_0^1 (f(t)+x)^2dt \]
を満たすとき,$f(x)=[イ]$である.
(3)$0<\theta \leqq 180^\circ$とする.数列$\{a_n\}$を次で定める.
\[ a_1 = \cos\theta, \quad a_{n+1}= a_n^2-1 \]
このとき,$a_4 = a_5$となる$\cos\theta$の最大値は$[ウ]$である.
(4)体積が$1$の正四面体の各辺の中点を頂点とする正八面体の体積は$[エ]$である.
早稲田大学 私立 早稲田大学 2012年 第5問
$k$を実数とする.$3$次関数
\[ f(x) = -x^3 + kx^2 +kx +1 \]
が$x=\alpha$で極小値をとり,$x=\beta$で極大値をとる.$3$点$\mathrm{A}(\alpha,\ f(\alpha))$,$\mathrm{B}(\beta,\ f(\beta))$,$\mathrm{C}(\beta,\ f(\alpha))$が$\mathrm{AC}=\mathrm{BC}$を満たすとき,
\[ \alpha + \beta = \frac{[テ]}{3}k, \quad \alpha\beta = \frac{[ト]}{3}k \]
である.したがって,
\[ k= \frac{[ナ] \pm [ニ]\sqrt{[ヌ]}}{2} \]
となる.ただし,[ニ]は自然数,[ヌ]はできるだけ小さい自然数で答えることとする.
早稲田大学 私立 早稲田大学 2012年 第6問
$0 \leqq x \leqq 1$において,連立不等式
\[ \left\{
\begin{array}{l}
1-2x \leqq f(x) \\
x \leqq f(x) \\
f(x) \leqq 1
\end{array}
\right.
\]
を満たす$2$次関数$f(x)$で,定積分$\displaystyle\int_0^1 f(x)\, dx$の値を最小にする関数は,
\[ f(x) = [ネ]x^2 + [ノ]x + [ハ] \]
であり,その最小値は$\displaystyle\frac{[ヒ]}{[フ]}$となる.ただし,[フ]はできるだけ小さい自然数で答えることとする.
早稲田大学 私立 早稲田大学 2012年 第4問
関数
\[ f(x) = \log(1+\sqrt{1-x^2}) - \sqrt{1-x^2} - \log x \quad (0<x<1) \]
について,つぎの問に答えよ.

(1)$f^\prime(x)$を求めよ.
(2)$y=f(x)$のグラフの概形を描け.
(3)曲線$y=f(x)$上を動く点を$\mathrm{P}$とする.点$\mathrm{Q}$は,曲線$y=f(x)$の$\mathrm{P}$における接線上にあり,$\mathrm{P}$との距離が$1$で,その$x$座標が$\mathrm{P}$の$x$座標より小さいものとする.$\mathrm{Q}$の軌跡を求めよ.
慶應義塾大学 私立 慶應義塾大学 2012年 第1問
$f(x),\ g(x)$を$x$の整式とする.これらが
\[ f(x) = 2x + \int_0^1 g(t) \, dt \]
\[g(x) = x^2 \int_0^1 f(t) \, dt + 2 \]
を満たすとき,
\[ f(x) = [(1)] x + \frac{[(2)]}{[(3)]} \]
\[ g(x) = \frac{[(4)]}{[(5)]}x^2 +[(6)]x + [(7)] \]
となる.さらに,
\[ \int_{-1}^2 \left\{f(t)+2g(t)\right\}\,dt = \frac{[(8)][(9)][(10)]}{[(11)]} \]
\[ \int_0^2 f(t)g^{\prime}(t) \, dt= [(12)][(13)][(14)] \]
である.
慶應義塾大学 私立 慶應義塾大学 2012年 第4問
$t$を実数の定数として,$x$の$3$次関数
\[ f(x) = \frac{1}{3}x^3-2^tx^2+(4^t-4^{-t})x \]
を考える.$f(x)$は$x=\alpha$において極大値を,$x=\beta$において極小値をとるとする.

(1)$\alpha,\ \beta$を$t$のなるべく簡単な式で表せ.
(2)$\alpha,\ \beta$が$\alpha\beta=1$を満たすとき
\[ t= \frac{1}{2} \left\{ \log_2 \left([(a)]+\sqrt{[(b)]}\right)-[(c)] \right\} \]
である.(a),\ (b),\ (c)にあてはまる$1$桁の自然数を求めよ.
(3)$\alpha,\ \beta$が$\beta-\alpha \geqq 12$を満たすときの$t$の値の範囲は
\[ t \leqq - [(d)] \log_2 [(e)] -1 \]
である.(d),\ (e)にあてはまる$1$桁の自然数を求めよ.
慶應義塾大学 私立 慶應義塾大学 2012年 第1問
次の各問いに答えよ.

(1)3つの行列の積
\[ \left(
x \quad y
\right) \left( \begin{array}{cc}
2 & a \\
a & 1
\end{array}
\right)
\left(
\begin{array}{c}
x \\
y
\end{array}
\right) \]
の成分が任意の実数$x,\ y$に対し0以上となるような実数$a$の範囲を不等式で表すと[ア]となる.
(2)$\angle B$が直角の直角三角形ABCの2辺AB,\ BCの長さをそれぞれ$3,\ 1$とする.また,$0<x<1$を満たす$x$に対し線分BCを$1:x$に外分する点をDとする.いま,$\angle \text{CAD}=2 \angle\text{BAC}$が成り立っているとすると,$x=[イ]$であり,$\triangle$ACDの外接円の半径は[ウ]である.
(3)関数$f(x),\ g(x)$が
\[
\left\{
\begin{array}{l}
f(x) = xe^x + 2x \displaystyle\int_0^2|g(t)|\, dt - 1 \\
\\
g(x) = x^2 -x \displaystyle\int_0^1 f(t)\,dt
\end{array}
\right.
\]
を満たすとき,$\displaystyle\int_0^2 |g(t)|\, dt$の値は[エ]または[オ]である.求める過程も解答欄(3)に書きなさい.
慶應義塾大学 私立 慶應義塾大学 2012年 第5問
$a>0$とし,$x$の$3$次関数$f(x)$を
\[ f(x) = x^3 -5ax^2 + 7a^2x \]
と定める.また,$t \geqq 0$に対し,曲線$y=f(x)$と$x$軸および$2$直線$x=t$,$x=t+1$で囲まれた部分の面積を$S(t)$で表す.

(1)$S(0)=[ト]$である.
(2)$f(x)$は$x=[ナ]$で極小値をとる.曲線$y=f(x)$上にあり,$x$の値$[ナ]$に対応する点を$\mathrm{P}$とする.$a$の値が変化するとき,点$\mathrm{P}$の軌跡は曲線$y=[ニ] \ (x>0)$である.
(3)$S(t)=S(0)$を満たす正の実数$t$が存在するような$a$の値の範囲を不等式で表すと$[ヌ]$となる.以下,$a$の値はこの範囲にあるとする.$c$を$S(c)=S(0)$を満たす最大の正の実数とする.区間$0 \leqq t \leqq c$における$S(t)$の最大値,最小値をそれぞれ$M(a)$,$m(a)$とするとき,$M(a)+m(a)=[ネ]$となる.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。