タグ「関数」の検索結果

148ページ目:全2213問中1471問~1480問を表示)
福岡教育大学 国立 福岡教育大学 2012年 第4問
次の問いに答えよ.

(1)無限級数
\[ 1+\frac{1}{1+e^x}+\frac{1}{(1+e^x)^2}+\cdots +\frac{1}{(1+e^x)^n}+\cdots \]
はすべての実数$x$について収束することを示し,その和を求めよ.ただし,$e$は自然対数の底とする.
(2)$(1)$で求めた無限級数の和を$f(x)$とする.方程式$\log f(x)=x$を解け.ただし,対数は自然対数とする.
金沢大学 国立 金沢大学 2012年 第3問
次の問いに答えよ.

(1)$f(t)$を$0 \leqq t \leqq 1$で連続な関数とする.$\tan x=t$とおいて,
\[ \int_0^{\frac{\pi}{4}} \frac{f(\tan x)}{\cos^2 x} \, dx=\int_0^1 f(t) \, dt \]
であることを示せ.
(2)(1)を用いて,$0$以上の整数$n$に対し,$\displaystyle \int_0^{\frac{\pi}{4}} \frac{\tan^n x}{\cos^2 x} \, dx$の値を求めよ.また,
\[ \int_0^{\frac{\pi}{4}} \tan^n x \, dx \leqq \frac{1}{n+1} \]
を示せ.
(3)$0$以上の整数$n$と$\displaystyle 0 \leqq x \leqq \frac{\pi}{4}$を満たす$x$に対し,
\[ \frac{1-\tan^2 x+\tan^4 x- \cdots +(-1)^n \tan^{2n} x}{\cos^2 x}=1-(-1)^{n+1} \tan^{2(n+1)} x \]
であることを示せ.
(4)(2)と(3)を用いて,$\displaystyle \lim_{n \to \infty}\sum_{k=0}^n (-1)^k \frac{1}{2k+1}$の値を求めよ.
愛媛大学 国立 愛媛大学 2012年 第1問
次の問いに答えよ.

(1)$\displaystyle \frac{1}{2+\sqrt{3}+\sqrt{7}}$の分母を有理化せよ.
(2)方程式$4x^2-3x+k=0$の$2$つの解が$\sin \theta,\ \cos \theta$で与えられるとき,定数$k$の値を求めよ.
(3)関数$y=4^x-2^{x+2}+1$の$-1 \leqq x \leqq 3$における最大値と最小値を求めよ.
(4)直方体の各面にさいころのように$1$から$6$までの目が書かれている.この直方体を投げて,$1,\ 6$の目が出る確率はともに$p$であり,$2,\ 3,\ 4,\ 5$の目が出る確率はいずれも$q$である.この直方体を$1$回投げて,出た目の数を得点とする.このとき,得点の期待値は$p,\ q$の値によらずに一定であることを示せ.
山梨大学 国立 山梨大学 2012年 第1問
次の問題文の枠内にあてはまる数あるいは数式を答えよ.

(1)関数$f(x)$が$p$を周期とする周期関数であるとは,すべての$x$で等式$[ ]$が成立することである.関数$\displaystyle g(x)=\sin^2 \left( 5x+\frac{\pi}{3} \right)$の正の最小の周期は$[ ]$である.
(2)実数$x$が$-\pi<x \leqq \pi$のとき,無限級数$\displaystyle \sum_{k=1}^\infty \sin^k x$が収束する条件は,$x$の値が$[ ]$以外のときであり,収束するときの無限級数の和は$[ ]$である.
(3)$\displaystyle \int_{-10}^0 \frac{1}{(x+11)(x+12)} \, dx=[ ]$であり,$\displaystyle \int_{-10}^0 \log (x+11) \, dx=[ ]$である.
(4)楕円$9x^2+4y^2+36x-40y+100=0$の$2$つの焦点のうち,$y$座標が大きい方の座標は$[ ]$である.この楕円の長軸の長さは$[ ]$である.
(5)関数$f(x)$を$f(x)=2x^2+1$とし,区間$[0,\ 1]$を$n$等分した小区間を,$\displaystyle \left[ \frac{0}{n},\ \frac{1}{n} \right]$,$\displaystyle \left[ \frac{1}{n},\ \frac{2}{n} \right]$,$\cdots$,$\displaystyle \left[ \frac{n-1}{n},\ \frac{n}{n} \right]$とする.各小区間を底辺とする$n$個の長方形の面積の総和をとる.$k$番目の小区間$\displaystyle \left[ \frac{k-1}{n},\ \frac{k}{n} \right]$において,長方形の高さとして左端での関数$f(x)$の値を用いたとき,この小区間での長方形の面積は$[ ]$となり,それらの長方形の面積の総和を$s_n$とする.また,$k$番目の小区間$\displaystyle \left[ \frac{k-1}{n},\ \frac{k}{n} \right]$において,長方形の高さとして右端での関数$f(x)$の値を用いたときの長方形の面積の総和を$S_n$とする.このとき,$S_n-s_n$は$[ ]$となる.
山梨大学 国立 山梨大学 2012年 第2問
次の問いに答えよ.

(1)多項式$f(x)$を$x-1$で割ると$3$余り,$x-2$で割ると$2$余るとき,$f(x)$を$(x-1)(x-2)$で割ったときの余りを求めよ.
(2)不等式$0<\log (x^2-4x+3)-\log (x^2-6x+8)<\log 2$を満たす$x$の範囲を求めよ.
(3)$f(x)$が等式$\displaystyle f(x)=x^2+\int_0^x f^\prime(t) e^{t-x} \, dt$を満たしているとき,$f(x)$を求めよ.
東京海洋大学 国立 東京海洋大学 2012年 第3問
定数$a (a \neq 1)$に対し,$f(x)=x^3-(a+2)x^2+(2a+1)x-a$とする.

(1)方程式$f(x)=0$の解を$a$を用いて表せ.
(2)関数$f(x)$の極値を$a$を用いて表せ.
(3)曲線$y=f(x)$と$x$軸で囲まれた図形の面積を$a$を用いて表せ.
ただし,$\displaystyle \int x^3 \, dx=\frac{x^4}{4}+C$($C$は積分定数)を用いてよい.
東京海洋大学 国立 東京海洋大学 2012年 第1問
$3$次関数$f(x)=-x^3+3ax^2+b$($a,\ b$は実数の定数)について,次の問に答えよ.

(1)$a=1,\ b=3$のとき,$f(x)$の極値を求め,$y=f(x)$のグラフをかけ.
(2)$0 \leqq x \leqq 2$のとき$f(x) \leqq 4$となるための$a,\ b$の条件を求めよ.
東京海洋大学 国立 東京海洋大学 2012年 第4問
$\displaystyle f(x)=x^3-\frac{7}{2}x^2+\frac{7}{2}x$として数列$\{a_n\}$を
\[ a_1=\frac{4}{3},\quad a_{n+1}=f(a_n) \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定めるとき,次の問に答えよ.

(1)$f(x)$は区間$\displaystyle \frac{4}{5} \leqq x \leqq \frac{4}{3}$で減少することを示せ.

(2)$\displaystyle \frac{4}{5} \leqq a_n \leqq \frac{4}{3} (n=1,\ 2,\ 3,\ \cdots)$を示せ.

(3)$\displaystyle \frac{1}{3} \left( \frac{9}{25} \right)^{n-1} \leqq |a_n-1| \leqq \frac{1}{3} \left( \frac{9}{16} \right)^{n-1} (n=1,\ 2,\ 3,\ \cdots)$を示せ.
京都教育大学 国立 京都教育大学 2012年 第5問
関数$f(x)=x^2-2$に対して,$y=f(x)$のグラフ上の点$(a,\ f(a))$における接線と$x$軸との交点の$x$座標を$g(a)$とおく.ただし,$a>0$とする.また$x_1=4$とし,$n=1,\ 2,\ 3,\ \cdots$に対して$x_{n+1}=g(x_n)$とおく.次の問に答えよ.

(1)$y=f(x)$のグラフ上の点$(4,\ 14)$におけるグラフの接線の方程式を求めよ.
(2)どのような自然数$n$に対しても$x_n>0$であることを数学的帰納法によって証明せよ.
(3)$x_3$を求めよ.
(4)どのような自然数$n$に対しても$x_{n+1} \geqq \sqrt{2}$であることを,相加平均と相乗平均の大小関係を使って証明せよ.
京都教育大学 国立 京都教育大学 2012年 第6問
$2$つの関数
\[ f(x)=x^3+1,\quad g(x)=f(1)+f^\prime(1)(x-1)+\frac{1}{2}f^{\prime\prime}(1)(x-1)^2 \]
について,次の問に答えよ.

(1)導関数の定義に従って$f(x)$の導関数$f^\prime(x)$を求めよ.
(2)$g(x)$を求めよ.
(3)$0 \leqq x \leqq 1$において常に$f(x) \leqq g(x)$であることを証明せよ.
(4)$2$つの曲線$y=f(x)$,$y=g(x)$と$y$軸で囲まれる図形の面積を求めよ.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。