タグ「関数」の検索結果

145ページ目:全2213問中1441問~1450問を表示)
愛知教育大学 国立 愛知教育大学 2012年 第2問
$a$を実数の定数とし,関数
\[ y=\cos 2x-2a \cos x+a^2-2a+3 \]
を考える.以下の問いに答えよ.

(1)$y$の最小値が$\displaystyle \frac{1}{2}$となるような$a$の値を求めよ.
(2)$(1)$で求めた$a$のもとで,$y$の最小値を与える$x$の値を$0 \leqq x \leqq \pi$の範囲で求めよ.
帯広畜産大学 国立 帯広畜産大学 2012年 第1問
等式
\[ \begin{array}{lrr}
c=\sin 2\theta-2 \cos \theta & &\cdots\cdots① \\
\log_y(x-3)+\log_y(x+1)-1=0 \quad (y>0,\ y \neq 1) & & \cdots\cdots②
\end{array} \]
について,次の各問に解答しなさい.

(1)$①$式について,$\sin \theta+\cos \theta=1$とする.

(i) $\sin \theta$と$\cos \theta$のとりうる値を求めなさい.
(ii) $c$のとりうる値を求めなさい.
(iii) 1個のサイコロを投げるとき,2以下の目が出れば$\sin \theta=0$,3以上の目が出れば$\sin \theta=1$とする.$c$の確率分布を求め,さらに,$c$の平均と分散を求めなさい.

(2)$①$式について,$\displaystyle c=-\frac{\sqrt{3}}{2},\ \sin \theta=\frac{1}{2}$とする.

(i) $0 \leqq \theta \leqq \pi$のとき,$\tan \theta$および$\theta$の値を求めなさい.
(ii) $0 \leqq \theta \leqq 10\pi$のとき,$\theta$がとりうるすべての値の合計を求めなさい.

(3)$②$式について,$y$を$x$の関数として$y=f(x)$と表す.

(i) 関数$f(x)$を$x$で表し,$x$のとりうる値の範囲を求めなさい.
(ii) $y=a$とするとき,$x$の値を$a$で表しなさい.ただし,$a$は$a>0,\ a \neq 1$を満たす定数である.
帯広畜産大学 国立 帯広畜産大学 2012年 第2問
座標平面上の2点A$(6,\ 0)$,B$(-2,\ 4)$を結ぶ線分AB上を点Tが移動する.原点Oと点Tを頂点とし,2辺がそれぞれ$x$軸と$y$軸上にある長方形の面積を$S$とする.また,点Tの座標を$(x,\ f(x))$とし,$S$を$x$の関数として$S(x)$と表す.次の各問に解答しなさい.

(1)$f(x)$と$S(x)$を$x$で表しなさい.さらに,区間$-2 \leqq x \leqq 6$における$y=S(x)$のグラフの概形を図示しなさい.
(2)直線$x=-2$と曲線$y=S(x)$および$x$軸で囲まれた図形の面積を求めなさい.
(3)区間$-2 \leqq x \leqq 4$における任意の$x$の値について,区間$x \leqq t \leqq x+2$における関数$S(t)$の最大値を$x$の関数として$M(x)$と定義する.関数$M(x)$を$x$で表し,さらに$y=M(x)$のグラフの概形を図示しなさい.
愛知教育大学 国立 愛知教育大学 2012年 第5問
$a$を実数の定数とし,$5$次多項式$\displaystyle f(x)=x^5-\frac{5}{3}(a^2+1)x^3+5a^2x$を考える.ただし,$a>1$とする.

(1)$5$次方程式$f(x)=0$が$5$つの異なる実数解をもつための$a$の条件を求めよ.
(2)$f(1)+f(a)$が${(a+1)}^3$で割り切れるかどうかを調べよ.
(3)$a$が$(1)$の条件を満たすとき,$|f(1)|>|f(a)|$となるための$a$の範囲を求めよ.
(4)$a$が$(1)$と$(3)$の条件を満たすとき,$5$次方程式$f(x)-c=0$が$5$つの異なる実数解をもつための実数$c$の範囲を求めよ.
福島大学 国立 福島大学 2012年 第1問
以下の問いに答えなさい.

(1)次の方程式を満たす$x$と$y$を求めなさい.
\[ |xy-2x-y+2|+|1-e^{x+y|}=0 \]
(2)次の不等式を解きなさい.
\[ 3 \log_{0.5}(x-1)>\log_{0.5}(-x^2+6x-7) \]
(3)次の定積分を求めなさい.
\[ \int_0^{\frac{\pi}{4}} x \sin 2x \, dx \]
(4)関数$f(x)=e^{\sin x}$を微分しなさい.
奈良教育大学 国立 奈良教育大学 2012年 第1問
$a>0$とする.次の関数$f(x)$について,$0 \leqq x \leqq 1$における最大値および最小値を求めよ.
\[ f(x)=x^3-a^2x \]
奈良教育大学 国立 奈良教育大学 2012年 第4問
次の問いに答えよ.

(1)関数$y=\sqrt{4-x^2}$のグラフの概形を描け.
(2)次の定積分を求めよ.
\[ \int_{-1}^1 \sqrt{4-x^2} \, dx \]
鳥取大学 国立 鳥取大学 2012年 第3問
$2$次関数$f(x)=-x^2+10x-16$について次の問いに答えよ.

(1)$f(x)=0$を満たす$x$の値$\alpha,\ \beta$を求めよ.ただし$\alpha<\beta$とする.
(2)関数$y=f(x)$のグラフと$x$軸とで囲まれた図形の面積$S$を求めよ.
(3)$2$次関数$g(x)=px^2+qx$と$f(x)$は同じ$x$の値で極値をとり,関数$y=g(x)$のグラフと$x$軸および$2$直線$x=\alpha,\ x=\beta$とで囲まれた図形の面積が$(2)$で求めた$S$に等しいとする.定数$p,\ q$の値を求めよ.
山形大学 国立 山形大学 2012年 第3問
自然数$n$に対して
\[ S(x)=\sum_{k=1}^n (-1)^{k-1}x^{2k-2},\quad R(x)=\frac{(-1)^n x^{2n}}{1+x^2} \]
とする.さらに$\displaystyle f(x)=\frac{1}{1+x^2}$とする.このとき,次の問に答えよ.

(1)等式$\displaystyle \int_0^1 S(x) \, dx=\sum_{k=1}^n (-1)^{k-1}\frac{1}{2k-1}$が成り立つことを示せ.
(2)定積分$\displaystyle \int_0^1 f(x) \, dx$の値を求めよ.
(3)等式$S(x)=f(x)-R(x)$が成り立つことを示せ.
(4)不等式$\displaystyle |\int_0^1 R(x) \, dx| \leqq \frac{1}{2n+1}$が成り立つことを示せ.
(5)無限級数$\displaystyle 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots$の和を求めよ.
茨城大学 国立 茨城大学 2012年 第1問
以下の各問に答えよ.

(1)極限$\displaystyle \lim_{x \to \infty} \left( \sqrt{x^2+x+3}-x \right)$を求めよ.
(2)関数$y=(x-2)^8(2x+3)^6$を微分せよ.
(3)次の定積分を求めよ.ただし,対数は自然対数であり,$e$は自然対数の底である.
\[ (ⅰ) \quad \int_0^1 \frac{x}{\sqrt{3x+1}} \, dx \qquad (ⅱ) \quad \int_{2}^{2e} \frac{1}{2} \log \frac{x}{2} \, dx \]
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。