タグ「関数」の検索結果

144ページ目:全2213問中1431問~1440問を表示)
島根大学 国立 島根大学 2012年 第2問
$x>0$に対して,$\displaystyle f_n(x)=x^{\frac{1}{n}}\log x \ (n=1,\ 2,\ 3,\ \cdots)$とおく.このとき,次の問いに答えよ.

(1)関数$f_n(x)$の極値と,極値を与える$x$の値を求めよ.
(2)(1)で求めた$x$の値を$a_n$とするとき,$x \geqq a_n$の範囲における曲線$y=f_n(x)$と直線$x=a_n$および$x$軸で囲まれた図形の面積$S_n$を求めよ.
(3)極限$\displaystyle \lim_{n \to \infty}S_n$を求めよ.ただし,必要があれば,$\displaystyle \lim_{n \to \infty}ne^{-n}=0$を用いてもよい.
島根大学 国立 島根大学 2012年 第3問
関数
\[ f(x)=\left( x+\frac{1}{2} \right) \log \left( 1+\frac{1}{x} \right) \quad (x>0) \]
について,次の問いに答えよ.

(1)$f^{\prime\prime}(x)$を求めよ.
(2)極限$\displaystyle \lim_{x \to \infty}f^{\prime}(x)$の値を求め,さらに$f^\prime(x)<0$であることを証明せよ.
(3)関数$y=f(x)$の凹凸と漸近線を調べ,そのグラフの概形をかけ.
宇都宮大学 国立 宇都宮大学 2012年 第4問
関数$f(x)=x^3-3x^2+2$について,次の問いに答えよ.

(1)$y=f(x)$の増減を調べ,極値を求めよ.また,グラフの概形をかけ.
(2)$\displaystyle -\frac{a}{2} \leqq x \leqq a$における$f(x)$の最大値$M$を求めよ.ただし,$a$は定数で$a>0$とする.
(3)$\displaystyle -\frac{a}{2} \leqq x \leqq a$における$f(x)$の最小値$m$を求めよ.ただし,$a$は定数で$a>0$とする.
東京学芸大学 国立 東京学芸大学 2012年 第3問
関数$f(x)=(x^2+\alpha x+\beta)e^{-x}$について,下の問いに答えよ.ただし,$\alpha,\ \beta$は定数とする.

(1)$f^\prime(x)$および$f^{\prime\prime}(x)$を求めよ.
(2)$f(x)$が$x=1$で極値をとるための$\alpha,\ \beta$の条件を求めよ.
(3)$f(x)$が$x=1$で極値をとり,さらに点$(4,\ f(4))$が曲線$y=f(x)$の変曲点となるように$\alpha,\ \beta$の値を定め,関数$y=f(x)$の極値と,その曲線の変曲点をすべて求めよ.
宇都宮大学 国立 宇都宮大学 2012年 第6問
関数$y=e^{-x}$のグラフを$C$とする.$C$上の点P$(t,\ e^{-t})$における接線と$x$軸との交点をQ$(u,\ 0)$とする.$C$上の点$(u,\ e^{-u})$をRとするとき,次の問いに答えよ.

(1)$u$を$t$の式で表せ.
(2)線分PQ,線分QRと$C$で囲まれた部分を図形Aとする.図形Aを$x$軸のまわりに1回転してできる立体の体積$V$を$t$の式で表せ.
(3)(1)の$u$を$t$の関数とみて$u(t)$と表す.数列$\{t_n\}$を$t_1=0,\ t_{n+1}=u(t_n) \ (n=1,\ 2,\ \cdots)$と定義するとき,一般項$t_n$を求めよ.
(4)(2)の$V$を$t$の関数とみて$V(t)$と表し,(3)の$t_n$を用いて$V_n=V(t_n) \ (n=1,\ 2,\ \cdots)$とおく.数列$\{V_n\}$は等比数列であることを示し,無限等比級数
\[ V_1+V_2+\cdots +V_n+\cdots \]
の収束,発散を調べ,収束する場合は,その和を求めよ.
小樽商科大学 国立 小樽商科大学 2012年 第1問
次の[ ]の中を適当に補いなさい.

(1)$0 \leqq \theta \leqq \pi$のとき,関数$y=(2 \sin \theta-3 \cos \theta)^2-(2 \sin \theta-3 \cos \theta)+1$の最大値$M$と最小値$m$を求めると,$(M,\ m)=[ ]$.
(2)$x^2-4x-3=0,\ x>0$のとき,$2x^4+0x^3+1x^2+2x+2012=p+q\sqrt{7}$を満たす整数$p,\ q$は$(p,\ q)=[ ]$.
(3)平面上に$\mathrm{A}(a,\ b)$,$\mathrm{B}(-2,\ 0)$,$\mathrm{C}(0,\ 0)$がある.点$\mathrm{M}$は線分$\mathrm{AB}$ \\
の中点で点$\mathrm{X}$は線分$\mathrm{AC}$を$(1-t):t$に内分する点である.ただし, \\
$\displaystyle -4<a<0,\ b>0,\ 0<t<\frac{1}{2}$とする.直線$\mathrm{MX}$と直線$\mathrm{BC}$の \\
交点を$\mathrm{P}$,線分$\mathrm{AP}$と直線$\mathrm{BX}$の交点を$\mathrm{Q}$とする.三角形$\mathrm{BCX}$の面積を$S_1$,三角形$\mathrm{XPQ}$の面積を$S_2$とおくと,$\displaystyle \frac{S_1}{S_2}=[ ]$.
\img{2_2_2012_1}{40}
室蘭工業大学 国立 室蘭工業大学 2012年 第1問
$a,\ b,\ c$を定数とし,$a>0$とする.関数$f(x),\ g(x)$を
\[ f(x)=x^2,\quad g(x)=-ax^2+bx+c \]
と定める.

(1)$2$つの放物線$y=f(x)$と$y=g(x)$が$2$つの交点を持つための必要十分条件を求めよ.
(2)$2$つの放物線$y=f(x)$と$y=g(x)$が$2$つの交点$(-1,\ 1)$,$(2,\ 4)$を持つとする.このとき,$b$と$c$を$a$を用いて表せ.
(3)$(2)$の条件のもとで,$2$つの放物線$y=f(x)$と$y=g(x)$で囲まれた図形の面積が$9$であるとき,$a,\ b,\ c$の値を求めよ.
室蘭工業大学 国立 室蘭工業大学 2012年 第2問
$a,\ b$を定数とする.関数$f(x)$は$0<x<2$で定義され,条件
\[ f^\prime(x)=\frac{2a}{x(2-x)}+b,\quad f^\prime \left( \frac{1}{2} \right)=9,\quad f^\prime(1)=7,\quad f(1)=1 \]
を満たすとする.

(1)$a,\ b$の値を求めよ.
(2)関数$f(x)$を求めよ.
(3)曲線$y=f(x)$の変曲点を求めよ.
小樽商科大学 国立 小樽商科大学 2012年 第4問
$-1<x<1$を定義域とする関数$\displaystyle f_p(x)=\frac{x-p}{1-px}$,$\displaystyle f_q(x)=\frac{x-q}{1-qx}$ \ $(-1<p<1,\ -1<q<1)$について,次の問いに答えよ.

(1)定義域内のすべての$x$に対して,$-1<f_q(x)<1$を示せ.
(2)定義域内のすべての$x$に対して,$\displaystyle f_p(f_q(x))=\frac{x-r}{1-rx}$を満たすとき,$r$を$p$と$q$を用いて表し,$-1<r<1$を示せ.ただし,$f_p(f_q(x))$は$\displaystyle f_p(y)=\frac{y-p}{1-py}$に$y=f_q(x)$を代入したものを意味するものとする.
(3)定義域内のすべての$x$に対して,$f_p(f_q(x))=f_q(x)$を満たす$p$を求めよ.
長岡技術科学大学 国立 長岡技術科学大学 2012年 第2問
関数$\displaystyle f(x)=x+\frac{1}{x}$について,以下の問いに答えなさい.

(1)$x>0$における曲線$y=f(x)$の概形を書きなさい.
(2)$t>0$のとき,3直線$y=0,\ x=t,\ x=t+2$と曲線$y=f(x)$で囲まれる部分の面積$S(t)$を求めなさい.
(3)$t>0$における$S(t)$の最小値を求めなさい.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。