タグ「関数」の検索結果

141ページ目:全2213問中1401問~1410問を表示)
秋田大学 国立 秋田大学 2012年 第1問
$a$は$\displaystyle a>-\frac{1}{2}$を満たす実数とし,$f(x)=x^2-2ax$とおく.次の問いに答えよ.

(1)2次関数$y=f(x)$のグラフの頂点を求めよ.
(2)2次不等式$f(x) \geqq x$を解け.
(3)$x$が$f(x) \geqq x$を満たす範囲を動くとき,$f(x)$の最小値を求めよ.
香川大学 国立 香川大学 2012年 第4問
定数$a>0$に対して,$f(x)=ax^3-6ax^2+9ax+1$とする.このとき,次の問に答えよ.

(1)関数$y=f(x)$の極値を調べて,そのグラフをかけ.
(2)点A,B,Cの座標をそれぞれ$(-1,\ f(-1))$,$(4,\ f(t))$,$(t,\ f(t))$とする.$-1<t<3$のとき,点Cにおける曲線$y=f(x)$の接線と,線分ABとが平行になるような$t$が1つだけ存在することを示せ.
宮崎大学 国立 宮崎大学 2012年 第1問
次の各問に答えよ.ただし,$\log x$は$x$の自然対数を表す.

(1)次の関数を微分せよ.

(2)$\displaystyle y=\frac{1-x^2}{1+x^2}$
(3)$y=\sin^3 (2x+1)$

(4)次の定積分の値を求めよ.

(5)$\displaystyle \int_1^2 \frac{x-1}{x^2-2x+2} \, dx$
(6)$\displaystyle \int_0^1 \frac{e^{4x}}{e^{2x}+2} \, dx$
(7)$\displaystyle \int_1^e x \log \sqrt{x} \, dx$
(8)$\displaystyle \int_0^{\frac{\pi}{3}} \left( \cos^2 x \sin 3x -\frac{1}{4} \sin 5x \right) \, dx$
宮崎大学 国立 宮崎大学 2012年 第2問
$a$を正の定数とするとき,関数
\[ y=\left( \log_2 \frac{1+\sin x}{a} \right) \left( \log_4 \frac{1+\sin x}{2a} \right) \quad \left( 0 \leqq x \leqq \frac{\pi}{2} \right) \]
の最小値を,$a$を用いて表せ.
宮崎大学 国立 宮崎大学 2012年 第4問
関数$\displaystyle f(x)=\frac{1}{1+x^2}$について,次の各問に答えよ.

(1)曲線$y=f(x)$上の点P$\displaystyle \left( \sqrt{3},\ \frac{1}{4} \right)$における接線$\ell$の方程式を求めよ.
(2)曲線$y=f(x)$と接線$\ell$との共有点のうち,点Pと異なる点Qの$x$座標を求めよ.
(3)曲線$y=f(x)$と接線$\ell$によって囲まれる部分の面積を求めよ.
宮崎大学 国立 宮崎大学 2012年 第1問
$a$を正の定数とするとき,関数
\[ y=\left( \log_2 \frac{1+\sin x}{a} \right) \left( \log_4 \frac{1+\sin x}{2a} \right) \quad \left( 0 \leqq x \leqq \frac{\pi}{2} \right) \]
の最小値を,$a$を用いて表せ.
宮崎大学 国立 宮崎大学 2012年 第3問
関数$\displaystyle f(x)=\frac{1}{1+x^2}$について,次の各問に答えよ.

(1)曲線$y=f(x)$上の点P$\displaystyle \left( \sqrt{3},\ \frac{1}{4} \right)$における接線$\ell$の方程式を求めよ.
(2)曲線$y=f(x)$と接線$\ell$との共有点のうち,点Pと異なる点Qの$x$座標を求めよ.
(3)曲線$y=f(x)$と接線$\ell$によって囲まれる部分の面積を求めよ.
宮崎大学 国立 宮崎大学 2012年 第1問
次の各問に答えよ.ただし,$\log x$は$x$の自然対数を表す.

(1)次の関数を微分せよ.

(2)$\displaystyle y=\frac{1-x^2}{1+x^2}$
(3)$y=\sin^3 (2x+1)$

(4)次の定積分の値を求めよ.

(5)$\displaystyle \int_1^2 \frac{x-1}{x^2-2x+2} \, dx$
(6)$\displaystyle \int_0^1 \frac{e^{4x}}{e^{2x}+2} \, dx$
(7)$\displaystyle \int_1^e x \log \sqrt{x} \, dx$
(8)$\displaystyle \int_0^{\frac{\pi}{3}} \left( \cos^2 x \sin 3x -\frac{1}{4} \sin 5x \right) \, dx$
香川大学 国立 香川大学 2012年 第5問
$a$を正の定数とし,座標平面上に異なる2点$\mathrm{A}(a,\ 0)$,$\mathrm{P}(x,\ 0)$をとる.線分の長さ$\mathrm{OP}$と$\mathrm{PA}$の比の値$\displaystyle \frac{\mathrm{OP}}{\mathrm{PA}}$について,次の問に答えよ.ただし,$\mathrm{O}$は原点を表す.

(1)$\displaystyle \frac{\mathrm{OP}}{\mathrm{PA}}$を$x,\ a$を用いて表せ.
(2)$\displaystyle \frac{\mathrm{OP}}{\mathrm{PA}}=\frac{1}{2}$のとき,$\mathrm{P}$の座標を求めよ.
(3)$\displaystyle f(x)=\frac{\mathrm{OP}}{\mathrm{PA}}$とするとき,関数$y=f(x)$のグラフの概形をかけ.
香川大学 国立 香川大学 2012年 第4問
定数$a>0$に対して,$f(x)=ax^3-6ax^2+9ax+1$とする.このとき,次の問に答えよ.

(1)関数$y=f(x)$の極値を調べて,そのグラフをかけ.
(2)点A,B,Cの座標をそれぞれ$(-1,\ f(-1))$,$(4,\ f(t))$,$(t,\ f(t))$とする.$-1<t<3$のとき,点Cにおける曲線$y=f(x)$の接線と,線分ABとが平行になるような$t$が1つだけ存在することを示せ.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。