タグ「関数」の検索結果

133ページ目:全2213問中1321問~1330問を表示)
富山県立大学 公立 富山県立大学 2013年 第3問
$x \geqq 0$とする.関数$f(x)=e^{-2x^3}$,$g(x)=xe^{-x^3}$について,次の問いに答えよ.ただし,$\displaystyle \lim_{x \to \infty}g(x)=0$は証明なしに用いてよい.

(1)導関数$f^\prime(x)$を求めよ.
(2)$y=g(x)$の増減,極値および変曲点を調べて,そのグラフの概形をかけ.
(3)$a \geqq 0$とし,曲線$y=g(x)$と$x$軸および$2$直線$x=a$,$x=a+1$で囲まれた部分を,$x$軸の周りに$1$回転させてできる立体の体積を$V(a)$とする.このとき,極限値$\displaystyle \lim_{a \to \infty}e^{2a^3}V(a)$を求めよ.
横浜市立大学 公立 横浜市立大学 2013年 第2問
$a$を正の定数とする.$n$を$0$以上の整数とし,多項式$P_n(x)$を$n$階微分を用いて
\[ P_n(x)=\frac{d^n}{dx^n}(x^2-a^2)^n \quad (n \geqq 1),\quad P_0(x)=1 \]
とおく.以下の問いに答えよ.

(1)$n=2$および$n=3$に対して
\[ P_2(-a),\quad P_3(-a) \]
を求めよ.
(2)$u=u(x)$,$v=v(x)$を何回でも微分可能な関数とする.そのとき,{\bf ライプニッツの公式}
\[ (uv)^{(n)}=\comb{n}{0}u^{(n)}v+\comb{n}{1}u^{(n-1)}v^\prime+\cdots +\comb{n}{k}u^{(n-k)}v^{(k)}+\cdots +\comb{n}{n-1}u^\prime v^{(n-1)}+\comb{n}{n}uv^{(n)} \]
を数学的帰納法を用いて証明せよ(ただし,$n \geqq 1$).ここで,$w^{(k)}$は$w=w(x)$の第$k$次導関数を表し,また$w^{(0)}=w$とする.
(3)一般の$n$に対して
\[ P_n(-a),\quad P_n(a) \]
を求めよ.
横浜市立大学 公立 横浜市立大学 2013年 第1問
$a,\ b,\ c$は正の実数とする.このとき,以下の問いに答えよ.

(1)関数
\[ \sqrt{x(a+x)}-a \log (\sqrt{x}+\sqrt{x+a}) \]
の導関数を求めよ.
(2)部分積分を用いて
\[ \int \sqrt{x(bx+c)} \, dx=\frac{1}{2}x \sqrt{x(bx+c)}+\frac{c}{4} \int \sqrt{\frac{x}{bx+c}} \, dx \quad (x>0) \]
が成り立つことを示せ.
(3)不定積分$\displaystyle \int \sqrt{x(2x+1)} \, dx (x>0)$を求めよ.
秋田県立大学 公立 秋田県立大学 2013年 第1問
$2$次関数$f(x)=-x^2-2x+1$,$g(x)=-2x^2+px+q$について,以下の設問に答えよ.ただし,$g(1)=-2$,$g(-1)=0$であり,$p,\ q$は実数の定数とする.各設問とも,解答とともに導出過程も記述せよ.

(1)$p$と$q$の値を求めよ.
(2)$f(x)<g(x)$となる$x$の値の範囲を求めよ.
(3)$h(x)$を次のように定義する.

$f(x) \geqq g(x)$の場合は$h(x)=f(x)$
$f(x)<g(x)$の場合は$h(x)=g(x)$

次に,正の実数$k$に対して$M(k)$と$m(k)$を次のように定義する.

$M(k)$は$-k \leqq x \leqq k$における$h(x)$の最大値
$m(k)$は$-k \leqq x \leqq k$における$h(x)$の最小値
(i) $M(2)$と$m(2)$の値を求めよ.
(ii) $M(k)$と$m(k)$の値を$k$を用いて表せ.
秋田県立大学 公立 秋田県立大学 2013年 第3問
$a$を正の定数とし,$f(x)=ae^{-ax}$とする.ただし,$e$を自然対数の底とする.原点を$\mathrm{O}$とし,曲線$y=f(x)$上の点$\mathrm{P}(s,\ f(s))$における接線$\ell$と$x$軸,$y$軸との交点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とするとき,以下の設問に答えよ.各設問とも,解答とともに導出過程も記述せよ.

(1)接線$\ell$の方程式と$2$点$\mathrm{Q}$,$\mathrm{R}$の座標を求めよ.
(2)曲線$y=f(x)$上の点$(1,\ f(1))$における接線と$x$軸,および直線$x=1$で囲まれた部分の面積を$S_1$とする.また,曲線$y=f(x)$と$x$軸,および$2$直線$x=1$,$x=t$で囲まれた部分の面積を$S_2$とする.ただし,$t>1$とする.このとき,$\displaystyle \lim_{t \to \infty} \frac{S_2}{S_1}$を求めよ.
(3)$s$の値が$s \geqq 0$の範囲で変化するとき,三角形$\mathrm{ROQ}$の面積$T(s)$の最大値とそのときの$s$の値を求めよ.
奈良県立医科大学 公立 奈良県立医科大学 2013年 第2問
$a>0$とする.関数$f(x)=x^3+ax^2-1$の極値の差が$4$となるとき,$a$の値を求めよ.
福島県立医科大学 公立 福島県立医科大学 2013年 第1問
以下の各問いに答えよ.

(1)座標平面上の直線$x+2y=6$上にあって,点$(2,\ -3)$との距離が最小になる点の座標を求めよ.
(2)座標平面上の曲線$C:x^2+xy+y^2=3$について,以下の問いに答えよ.

(i) 原点のまわりの${45}^\circ$の回転移動によって,$C$上の各点が移る曲線の方程式を求めよ.
(ii) 曲線$C$で囲まれた図形のうち,$y \geqq 0$の領域に含まれる部分の面積を求めよ.

(3)座標平面上において,曲線$C_1:y=x \log x (x \geqq 1)$と放物線$C_2:y=ax^2$がある点$\mathrm{P}$を共有し,$\mathrm{P}$において共通の接線$\ell$を持つものとする.

(i) $a$の値を求めよ.
(ii) $C_1$,$C_2$および$x$軸によって囲まれた図形の面積を$S_1$とし,$C_1$,$\ell$および$x$軸によって囲まれた図形の面積を$S_2$とする.$S_1,\ S_2$の値を求めよ.

(4)$\triangle \mathrm{ABC}$において,$\angle \mathrm{A}$と$\angle \mathrm{B}$の大きさをそれぞれ$A$,$B$で表し,頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の対辺の長さをそれぞれ$a,\ b,\ c$で表す.$\displaystyle \tan \theta=\frac{3}{4}$になる$\displaystyle \theta \left( -\frac{\pi}{2}<\theta<\frac{\pi}{2} \right)$について,$\displaystyle \frac{a}{c} \cos (B-\theta)+\frac{b}{c} \cos (A+\theta)$の値を求めよ.
(5)$n$は自然数とする.導関数の定義にしたがって,関数$f(x)=x^n$の導関数を求めよ.
(6)$n$は$2$以上の自然数とする.$\displaystyle \frac{1}{2^n}$は,小数第$(n-1)$位が$2$,小数第$n$位が$5$である小数第$n$位までの有限小数で表わされることを示せ.
京都府立大学 公立 京都府立大学 2013年 第2問
定数$a$を実数とし,$0 \leqq x<2\pi$とする.関数$f(x)=1-2a-2a \cos x-2 \sin^2 x$の最小値が$\displaystyle \frac{1}{2}$のとき,$a$の値とそのときの$f(x)$の最大値を求めよ.
京都府立大学 公立 京都府立大学 2013年 第4問
$x \geqq 0$とする.関数$f(x)=-x^3+x$と関数$g(x)=x^3-x^2$がある.$xy$平面上に曲線$C_1:y=f(x)$および曲線$C_2:y=g(x)$を定めるとき,以下の問いに答えよ.

(1)曲線$C_1$上の点$(1,\ 0)$における曲線$C_1$の接線の方程式を求めよ.
(2)$(1)$で得られた曲線$C_1$の接線と曲線$C_2$の接線が直交するとき,曲線$C_2$の接線の方程式を求めよ.
(3)$0 \leqq x \leqq 1$において,$f(x) \geqq g(x)$が成り立つことを示せ.
(4)原点を通り,曲線$C_1$と曲線$C_2$とで囲まれる図形の面積を二等分する直線の方程式を求めよ.
福岡女子大学 公立 福岡女子大学 2013年 第3問
関数$f(x)$に対して,
\[ \int_0^x f(t) \, dt=-x^3+ax^2+bx+c \]
とする.$a,\ b,\ c$は定数である.以下の問に答えなさい.

(1)$f(x)$は,$x=p$で最大値$q$をとる.$p,\ q$を$a,\ b$を用いて表しなさい.

(2)$\displaystyle F(x)=\int_0^x f(t) \, dt$とおき,$F(3)=0$,$f(2)=0$とする.$F(0)=0$となることに注意して,$a,\ b,\ c$の値を求めなさい.
(3)$(2)$の条件の下で,方程式$f(x)=0$のもう$1$つの解を求めなさい.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。