タグ「関数」の検索結果

132ページ目:全2213問中1311問~1320問を表示)
京都府立大学 公立 京都府立大学 2013年 第3問
$0 \leqq a<1$とする.$xy$平面上の曲線$C$を$y=1+x \sqrt{1-x^2}$で,直線$\ell$を$y=1+ax$で定める.$C$と$\ell$で囲まれた部分を$x$軸のまわりに$1$回転してできる立体の体積を$a$の関数と考えて$V(a)$とする.以下の問いに答えよ.

(1)$-1 \leqq x \leqq 1$とするとき,不等式$2x \sqrt{1-x^2} \geqq x$を解け.
(2)$V(a)$を$a$を用いて多項式で表せ.
(3)$\displaystyle M_n=\frac{1}{2n} \sum_{k=1}^n V \left( \frac{k}{2n} \right)$とするとき,$\displaystyle \lim_{n \to \infty}M_n$を求めよ.
名古屋市立大学 公立 名古屋市立大学 2013年 第1問
$m$を整数として,二次関数$f(x)=x^2+mx+3$を考える.次の問いに答えよ.

(1)$f(x)=0$の解がすべて整数となる$2$個の$m$の値$m_1,\ m_2$を求めよ.
(2)$g(x)=\min (x^2+m_1x+3,\ x^2+m_2x+3)$としたとき,$x$軸と曲線$y=g(x)$によって囲まれる図形の面積を求めよ.ただし,$\min (a,\ b)$は$a,\ b$のうち大きくない方の値を表す.
名古屋市立大学 公立 名古屋市立大学 2013年 第1問
次の問いに答えよ.

(1)関数$f(x)=x \log x-\tan x$について,曲線$y=f(x)$上の点$\displaystyle \mathrm{P} \left( \frac{\pi}{4},\ f \left( \frac{\pi}{4} \right) \right)$における接線の方程式を求めよ.

(2)定積分$\displaystyle A=\int_0^\pi e^{-ax} \cos 2x \, dx$を求めよ.ただし,$a \neq 0$とする.

(3)定積分$\displaystyle B=\int_0^\pi e^{-ax} \sin^2 x \, dx$,$\displaystyle C=\int_0^\pi e^{-ax} \cos^2 x \, dx$を求めよ.ただし,$a \neq 0$とする.
名古屋市立大学 公立 名古屋市立大学 2013年 第3問
次の問いに答えよ.

(1)$\displaystyle \int_0^\pi e^x \sin x \, dx$および$\displaystyle \int_0^\pi e^x \cos x \, dx$を求めよ.

(2)$\displaystyle \int_0^\pi xe^x \sin x \, dx$および$\displaystyle \int_0^\pi xe^x \cos x \, dx$を求めよ.

(3)次の関係を満足する関数$f(x),\ g(x)$を求めよ.
\[ \left\{ \begin{array}{l}
f(x)=e^x \sin x+\int_0^\pi ug(u) \, du \\ \\
g(x)=e^x \cos x+\int_0^\pi uf(u) \, du
\end{array} \right. \]
釧路公立大学 公立 釧路公立大学 2013年 第3問
$k$を$0<k<1$の範囲の定数とする.直線$\ell:y=kx$と曲線$C:y=|x^2-2x|$について以下の各問に答えよ.

(1)直線$\ell$と曲線$C$の交点$\mathrm{P}_1(x_1,\ y_1)$,$\mathrm{P}_2(x_2,\ y_2)$を求めよ.ただし,$0<x_1<x_2$とする.
(2)原点を$\mathrm{O}$として,線分$\mathrm{OP}_1$と曲線$C$で囲まれる部分の面積を$S_1$,線分$\mathrm{P}_1 \mathrm{P}_2$と曲線$C$で囲まれる部分の面積を$S_2$とする.このとき,$S_1$と$S_2$をそれぞれ$k$の関数で表せ.
(3)$S=S_1+S_2$とする.このとき,$S$が最小となる$k$の値を求めよ.
釧路公立大学 公立 釧路公立大学 2013年 第1問
以下の各問に答えよ.

(1)ある大学の売店では年会費を$5,000$円払えば会員となり,品物を$5 \, \%$引きで買うことができる.$1$個$380$円の品物を買うとき,何個以上買うと,会員になった方が,会員にならないよりも合計金額が安くなるか答えよ.
(2)$2$次関数$y=3x^2+6nx+12n$がある.

(i) この$2$次関数の最小値$m$を,$n$の関数で表せ.
(ii) $n$の値を変化させて,$(1)$における最小値$m$が最も大きくなるときの$n$の値と,そのときの$m$の値を求めよ.

(3)底面の半径が$6$,高さが$8$の円錐に内接する球$\mathrm{Q}$の表面積と体積を求めよ.ただし,円周率は$\pi$とする.
札幌医科大学 公立 札幌医科大学 2013年 第4問
関数$f(x)=x \cos x-\sin x$を区間$I:\pi \leqq x \leqq 3\pi$で考える.

(1)不定積分$\displaystyle \int f(x) \, dx$を求めよ.
(2)区間$I$における関数$f(x)$の最大値と最小値を求めよ.区間$I$において$f(x)=0$をみたす$2$点を$x=s,\ t$とする.ただし$s<t$とする.
(3)$s$と$t$は,それぞれ次の$4$つの区間

$\displaystyle \pi \leqq x \leqq \frac{3}{2}\pi,\quad \frac{3}{2}\pi \leqq x \leqq 2\pi,$

$\displaystyle 2\pi \leqq x \leqq \frac{5}{2}\pi,\quad \frac{5}{2}\pi \leqq x \leqq 3\pi$

のどれに入るか.
(4)$x$軸の$4\pi-t \leqq x \leqq 2\pi$の部分,直線$x=4\pi-t$,直線$x=2\pi$および$y=f(x)$で囲まれた図形の面積を$S$とする.また,$x$軸の$2\pi \leqq x \leqq t$の部分,$x=2\pi$および$y=f(x)$で囲まれた図形の面積を$T$とする.このとき$S$と$T$の大小を比較せよ.
鳥取環境大学 公立 鳥取環境大学 2013年 第2問
関数$f(x)=x^3-6x^2+9x-1$($x$は実数)について,以下の問に答えよ.

(1)曲線$y=f(x)$の接線のうち,点$(0,\ 3)$を通るものすべての方程式を求めよ.また,その求め方を説明せよ.
(2)点$(1,\ 3)$を通る傾き$a$の直線と曲線$y=f(x)$が$3$点で交わるとき,$a$のとり得る値の範囲を求めよ.また,その求め方を説明せよ.
和歌山県立医科大学 公立 和歌山県立医科大学 2013年 第1問
関数$f(x)$を,
\[ f(x)=\left\{ \begin{array}{ll}
2x+1 & \displaystyle \left( 0 \leqq x<\frac{\pi}{2} \right) \\
2x+\sin x & \displaystyle \left( x \geqq \frac{\pi}{2} \right) \phantom{\frac{[ア]}{2}}
\end{array} \right. \]
と定め,関数$g(x)$を,$g(x)=f(2x)-2f(x) (0 \leqq x \leqq 2\pi)$と定める.

(1)関数$g(x)$の最大値と最小値,およびそれらをとる$x$の値を求めよ.
(2)曲線$C:y=g(x)$の概形を描け.ただし,変曲点に留意しなくてよい.
(3)区間$[0,\ 2\pi]$で,曲線$C$と$x$軸の間にある部分を$x$軸のまわりに$1$回転させてできる立体の体積$V$を求めよ.
岐阜薬科大学 公立 岐阜薬科大学 2013年 第1問
関数$f(x)=x^3-6x^2+9x+1$について,次の問いに答えよ.

(1)$f(x)$の増減を調べ,極値を求めよ.
(2)定数$k$について,方程式$f(x)-k=0$の異なる実数解の個数を調べよ.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。