タグ「関数」の検索結果

110ページ目:全2213問中1091問~1100問を表示)
帯広畜産大学 国立 帯広畜産大学 2013年 第2問
関数$\displaystyle f(x)=\frac{1}{2}x^3+ax^2+bx+c$で定義される曲線$y=f(x)$は,$3$点$(0,\ 0)$,$(2,\ 0)$,$(-2,\ 0)$を通る.また,曲線$y=f(x)$を$x$軸方向に$1$だけ移動した曲線を$y=g(x)$とする.ただし,$a,\ b,\ c$は実数とする.次の各問に答えよ.

(1)$a,\ b,\ c$の値を求めなさい.
(2)関数$y=f(x)$の増減表を作り,そのグラフの概形を図示しなさい.
(3)曲線$y=f(x)$と円$x^2+y^2=4$のすべての交点を求めなさい.
(4)連立不等式
\[ \left\{ \begin{array}{l}
x^2+y^2 \leqq 4 \\
y \geqq f(x) \\
y \geqq g(x)
\end{array} \right. \]
で示される領域を図示し,この領域の面積を求めなさい.
佐賀大学 国立 佐賀大学 2013年 第4問
関数$f(x)=xe^{-2x}$に関して次の問に答えよ.ただし,$e$は自然対数の底である.

(1)曲線$y=f(x)$の概形をかけ.必要ならば,$\displaystyle \lim_{x \to \infty}xe^{-2x}=0$を使ってよい.
(2)曲線$y=f(x)$の接線のうちで傾きが最小となるものを$\ell$とする.その接線$\ell$の方程式と接点$(a,\ f(a))$を求めよ.
(3)$x<a$において,接線$\ell$は曲線$y=f(x)$より常に上側にあることを証明せよ.ただし,$a$は(2)で求めたものとする.
(4)曲線$y=f(x)$,接線$\ell$,および$y$軸で囲まれた図形の面積$S$を求めよ.
九州工業大学 国立 九州工業大学 2013年 第3問
関数$f(x)=\log x$がある.曲線$y=f(x)$の点$(t,\ \log t)$における接線の方程式を$y=g(x)$とするとき,次に答えよ.ただし,対数は自然対数を表し,$e$は自然対数の底とする.

(1)$x>0$のとき,不等式$f(x)-g(x) \leqq 0$を証明せよ.

(2)$\displaystyle t>\frac{1}{2}$のとき,$\displaystyle \int_{t-\frac{1}{2}}^{t+\frac{1}{2}}f(x) \, dx$と$\displaystyle \int_{t-\frac{1}{2}}^{t+\frac{1}{2}}g(x) \, dx$をそれぞれ$t$を用いて表せ.

(3)自然数$n$に対して,$n!$と$\displaystyle \sqrt{2} \left( n+\frac{1}{2} \right)^{n+\frac{1}{2}}e^{-n}$の大小を比較せよ.
茨城大学 国立 茨城大学 2013年 第1問
次の各問に答えよ.

(1)$0 \leqq x \leqq \pi$とする.$-1 \leqq \tan x \leqq \sqrt{3}$を満たす$x$の範囲を求めよ.
(2)$x$が(1)で求めた範囲を動くとき,$f(x)=\sin x+2 \cos x$の最大値と最小値を求めよ.
茨城大学 国立 茨城大学 2013年 第4問
$a,\ b$を実数として,関数$f(x)=x^3-ax^2+bx+1$について次の各問に答えよ.

(1)微分係数$f^\prime(0)$,$f^\prime(1)$を$a,\ b$を用いて表せ.
(2)$f(x)$が極大値と極小値をもつための$a,\ b$の条件を求めよ.
(3)$f(x)$が極大値と極小値をもつとき,極大値と極小値の平均が$1$となるための$a,\ b$の条件を求めて,$ab$平面上に図示せよ.
茨城大学 国立 茨城大学 2013年 第1問
以下の各問に答えよ.

(1)関数$f(x)=\log_a (ax)$を微分せよ.ただし,$a>0$かつ$a \neq 1$とする.

(2)関数$\displaystyle g(x)=\int_1^{x^2+1}t^2(t-1)^5 \, dt$を微分せよ.

(3)定積分$\displaystyle \int_0^1 \frac{1-x}{1+x} \, dx$を求めよ.

(4)定積分$\displaystyle \int_1^e \frac{\log \sqrt{x}}{\sqrt{x}} \, dx$を求めよ.ただし,対数は自然対数であり,$e$は自然対数の底である.
茨城大学 国立 茨城大学 2013年 第2問
$f(x)=x^3-x+5$として,曲線$y=f(x)$を$C$とする.点$\mathrm{P}(a,\ f(a))$における$C$の接線を$\ell$,法線を$n$とする.以下の各問に答えよ.ただし,点$\mathrm{P}$における$C$の法線とは,点$\mathrm{P}$を通り,かつ点$\mathrm{P}$における$C$の接線に直交する直線のことである.

(1)$\ell,\ n$の方程式をそれぞれ求めよ.
(2)$\ell$と$C$の共有点で,$\mathrm{P}$以外のものの個数を求めよ.
(3)$\displaystyle |a|<\frac{1}{\sqrt{3}}$のときには,$n$と$C$との共有点が$\mathrm{P}$以外にも存在することを示せ.
東京学芸大学 国立 東京学芸大学 2013年 第4問
$x \geqq 0$において連続関数$f(x)$が不等式
\[ f(x) \leqq a+\int_0^x 2tf(t) \, dt \]
をみたしているとする.$g(x)=ae^{x^2}$とするとき,下の問いに答えよ.ただし,$a$は$0$以上の定数である.

(1)等式$\displaystyle g(x)=a+\int_0^x 2tg(t) \, dt$を示せ.
(2)$\displaystyle h(x)=e^{-x^2}\int_0^x 2tf(t) \, dt$とするとき,$x>0$において不等式$h^\prime(x) \leqq 2axe^{-x^2}$が成り立つことを示せ.
(3)$x \geqq 0$において不等式$f(x) \leqq g(x)$が成り立つことを示せ.
電気通信大学 国立 電気通信大学 2013年 第1問
関数$\displaystyle f(x)=\sin x+\frac{1}{2 \sin x} \ (0<x<\pi)$について以下の問いに答えよ.

(1)$f^\prime(x)=0$となる$x$の値を求めよ.
(2)$f(x)$の増減を調べ,極値を求めよ.さらに,$y=f(x)$のグラフの概形をかけ.ただし,グラフの凹凸は調べなくてよい.
(3)$0<x<\pi$のとき,
\[ \frac{d}{dx}\{\log (1-\cos x)-\log (1+\cos x)\} \]
を求めよ.
(4)定積分$\displaystyle \int_{\frac{\pi}{4}}^{\frac{3}{4}\pi}f(x) \, dx$を求めよ.
電気通信大学 国立 電気通信大学 2013年 第2問
関数$\displaystyle y=\frac{e^x}{e^x+e^{-x}}$について以下の問いに答えよ.

(1)定積分$\displaystyle I=\int_{-1}^1 y \, dx$を求めよ.

以下では,$n$は自然数とする.

(2)$\displaystyle I_n=\frac{1}{n}\int_{-n}^n y \, dx$を求めよ.

(3)$\displaystyle J_n=\frac{1}{n}\int_{-n}^n y(1-y) \, dx$を求めよ.

(4)$\displaystyle K_n=\frac{1}{n}\int_{-n}^n y^2 \, dx$とおくとき,極限値$\displaystyle \lim_{n \to \infty}K_n$を求めよ.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。