タグ「関数」の検索結果

105ページ目:全2213問中1041問~1050問を表示)
信州大学 国立 信州大学 2013年 第2問
$0 \leqq t \leqq 1$とする.関数$\displaystyle f(t)=\int_0^1 |\sqrt{x|-t} \, dx+t^2$について,次の問いに答えよ.

(1)$f(t)$を$t$の多項式で表せ.
(2)$f(t)$の最小値を求めよ.
金沢大学 国立 金沢大学 2013年 第2問
$\displaystyle -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$に対して,関数$f(\theta)$を
\[ f(\theta)=\frac{2}{3}\sin 3\theta-\sin \theta-\sqrt{3} \cos \theta \]
とおく.$t=\sin \theta+\sqrt{3} \cos \theta$とするとき,次の問いに答えよ.

(1)$t$のとりうる値の範囲を求めよ.
(2)$\sin 3\theta=3 \sin \theta-4 \sin^3 \theta$を示せ.また,$\displaystyle \frac{t^3-3t}{2}=\sin 3\theta$が成り立つことを示せ.
(3)$f(\theta)$を$t$の式で表せ.また,それを利用して$f(\theta)$の最大値と最小値,および最大値,最小値を与える$\theta$の値を求めよ.
金沢大学 国立 金沢大学 2013年 第3問
$a>0$とする.$x \geqq 0$における関数$f(x)=e^{\sqrt{ax}}$と曲線$C:y=f(x)$について,次の問いに答えよ.

(1)$C$上の点$\displaystyle \mathrm{P} \left( \frac{1}{a},\ f \left( \frac{1}{a} \right) \right)$における接線$\ell$の方程式を求めよ.また,$\mathrm{P}$を通り$\ell$に直交する直線$m$の方程式を求めよ.
(2)定積分$\displaystyle \int_0^{\frac{1}{a}}f(x) \, dx$を$t=\sqrt{ax}$とおくことにより求めよ.
(3)曲線$C$,直線$y=1$および直線$m$で囲まれた図形の面積$S(a)$を求めよ.また,$a>0$における$S(a)$の最小値とそれを与える$a$の値を求めよ.
新潟大学 国立 新潟大学 2013年 第4問
1次関数$f(x)=px+q$に対して,$x$の係数$p$と定数項$q$を成分にもつベクトル$(p,\ q)$を$\overrightarrow{f}$とする.つまり,$\overrightarrow{f}=(p,\ q)$とする.次の問いに答えよ.

(1)定積分
\[ \int_{-\sqrt{3}}^{\sqrt{3}} (kx+l)(mx+n) \, dx \]
を求めよ.ただし,$k,\ l,\ m,\ n$は定数である.
(2)2つの1次関数$g(x)$と$h(x)$に対して,等式
\[ \frac{1}{2 \sqrt{3}} \int_{-\sqrt{3}}^{\sqrt{3}} g(x)h(x) \, dx=\overrightarrow{g} \cdot \overrightarrow{h} \]
が成り立つことを示せ.ただし,$\overrightarrow{g} \cdot \overrightarrow{h}$はベクトル$\overrightarrow{g}$,$\overrightarrow{h}$の内積を表す.
(3)等式
\[ \int_{-\sqrt{3}}^{\sqrt{3}} (2x+1)^2 \, dx \int_{-\sqrt{3}}^{\sqrt{3}} \{g(x)\}^2 \, dx=\left\{ \int_{-\sqrt{3}}^{\sqrt{3}} (2x+1)g(x) \, dx \right\}^2 \]
を満たし,$g(0)=-2$であるような1次関数$g(x)$を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2013年 第3問
$m,\ n$を自然数として,関数$f(x)=x^m(1-x)^n$を考える.このとき以下の各問いに答えよ.

(1)$0 \leqq x \leqq 1$における$f(x)$の最大値を$m,\ n$を用いて表せ.
(2)定積分$\displaystyle \int_0^1 f(x) \, dx$を$m,\ n$を用いて表せ.
(3)$a,\ b,\ c$を実数として,関数$g(x)=ax^2+bx+c$の$0 \leqq x \leqq 1$における最大値を$M(a,\ b,\ c)$とする.次の2条件$(ⅰ),\ (ⅱ)$が成立するとき,$M(a,\ b,\ c)$の最小値を$m,\ n$を用いて表せ.

(i) $g(0)=g(1)=0$
(ii) $0<x<1$のとき$f(x) \leqq g(x)$

(4)$m,\ n$が2以上の自然数で$m>n$であるとき
\[ \frac{(m+n+1)!}{m!n!}>\frac{(m+n)^{m+n}}{m^mn^n}>2^{2n-1} \]
が成立することを示せ.
神戸大学 国立 神戸大学 2013年 第3問
$c$を$0<c<1$をみたす実数とする.$f(x)$を$2$次以下の多項式とし,曲線$y=f(x)$が$3$点$(0,\ 0)$,$(c,\ c^3-2c)$,$(1,\ -1)$を通るとする.次の問いに答えよ.

(1)$f(x)$を求めよ.
(2)曲線$y=f(x)$と曲線$y=x^3-2x$で囲まれた部分の面積$S$を$c$を用いて表せ.
(3)$(2)$で求めた$S$を最小にするような$c$の値を求めよ.
神戸大学 国立 神戸大学 2013年 第4問
$a,\ b$を実数とする.次の問いに答えよ.

(1)$f(x)=a \cos x+b$が,
\[ \int_0^\pi f(x) \, dx=\frac{\pi}{4}+\int_0^\pi \{f(x)\}^3 \, dx \]
をみたすとする.このとき,$a,\ b$がみたす関係式を求めよ.
(2)(1)で求めた関係式をみたす正の数$b$が存在するための$a$の条件を求めよ.
熊本大学 国立 熊本大学 2013年 第2問
$f(x)$を$x=-1$で極大,$x=2$で極小となる$3$次関数で
\[ \int_0^2 f^\prime(x) \, dx=-5 \]
を満たすものとする.以下の問いに答えよ.

(1)$f^\prime(x)$を求めよ.
(2)$f(x)$の極大値と極小値の差を求めよ.
千葉大学 国立 千葉大学 2013年 第1問
$a,\ b$を正の整数とする.このとき,関数
\[ y=|x^2-ax+\displaystyle\frac{a^2|{2}-5} \]
のグラフと直線$y=b$との共有点を考える.

(1)共有点が$3$個になるような$(a,\ b)$の組をすべて求めよ.
(2)共有点が$1$個になるような$(a,\ b)$の組のうち,$b$が最小になるものを求めよ.
筑波大学 国立 筑波大学 2013年 第1問
$f(x),\ g(t)$を
\[ \begin{array}{l}
f(x)=x^3-x^2-2x+1 \\
g(t)=\cos 3t-\cos 2t+\cos t
\end{array} \]
とおく.

(1)$2g(t)-1=f(2 \cos t)$が成り立つことを示せ.
(2)$\displaystyle \theta=\frac{\pi}{7}$のとき,$2g(\theta)\cos \theta=1+\cos \theta-2g(\theta)$が成り立つことを示せ.
(3)$\displaystyle 2 \cos \frac{\pi}{7}$は$3$次方程式$f(x)=0$の解であることを示せ.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。