タグ「関数」の検索結果

101ページ目:全2213問中1001問~1010問を表示)
兵庫県立大学 公立 兵庫県立大学 2014年 第2問
関数$f(x)=ax^2+bx+c (a>0)$で定まる放物線$C:y=f(x)$と,$C$に$x=\alpha$で接する接線$\ell$,および,直線$x=\beta (\alpha<\beta)$とで囲まれた領域の面積を$S$とする.このとき,$S$を$\alpha$と$\beta$を用いて表しなさい.
兵庫県立大学 公立 兵庫県立大学 2014年 第3問
互いに異なる$2$つの正の実数$a,\ b$をそれぞれ底とする$2$つの対数関数を考え,これらのグラフ$C_a:y=\log_ax$,および,$C_b:y=\log_bx$を図に示した.また,図中の点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{T}$はそれぞれ,直線$x=t (t>0,\ t \neq 1)$と$C_a$,$C_b$,および$x$軸との交点である.$t=a$のとき,$\mathrm{AT}:\mathrm{BT}=3:2$であった.次の問に答えなさい.
(図は省略)

(1)$a,\ b,\ 1$それぞれの間に成り立つ大小関係を調べなさい.
(2)条件$t \neq 1$,$t>0$を満たす任意の実数$t$に対して定まる$\mathrm{A}$,$\mathrm{B}$,$\mathrm{T}$について,$\mathrm{AT}:\mathrm{BT}$を求めなさい.
(3)図中の点$\mathrm{P}$,$\mathrm{Q}$は各々$C_a$,$C_b$上の点であり,各々の$y$座標は互いに等しく,点$\mathrm{Q}$の$x$座標は$8$である.このとき,点$\mathrm{P}$の$x$座標$u$の値を求めなさい.
愛知県立大学 公立 愛知県立大学 2014年 第3問
以下の問いに答えよ.

(1)定積分$\displaystyle \int_0^\pi \cos mx \cos nx \, dx$を求めよ.ただし,$m,\ n$は自然数とする.
(2)$a$と$b$を$a<b$を満たす実数とし,$f(x)$と$g(x)$を区間$[a,\ b]$で定義された連続な関数とする.また,
\[ \int_a^b \{f(x)\}^2 \, dx \neq 0,\quad \int_a^b \{g(x)\}^2 \, dx \neq 0 \]
であるとする.このとき,任意の実数$t$に対して
\[ \int_a^b \{tf(x)+g(x)\}^2 \, dx \geqq 0 \]
が成り立つことを用いて,次の不等式が成り立つことを示せ.
\[ \left\{ \int_a^b f(x)g(x) \, dx \right\}^2 \leqq \left( \int_a^b \{f(x)\}^2 \, dx \right) \left( \int_a^b \{g(x)\}^2 \, dx \right) \]
また,等号が成り立つ条件は,$k$を定数として$g(x)=kf(x)$と表せるときであることを示せ.
(3)$f(x)$は区間$[-\pi,\ \pi]$で定義された連続な関数で$\displaystyle \int_{-\pi}^\pi \{f(x)\}^2 \, dx=1$を満たす.このとき,
\[ I=\int_{-\pi}^\pi f(x) \cos 2x \, dx \]
を最大とする$f(x)$とそのときの$I$の値を求めよ.
岐阜薬科大学 公立 岐阜薬科大学 2014年 第1問
関数$\displaystyle y=-2 \sin \theta \cos \theta+2a(\sin \theta+\cos \theta)-a \left( -\frac{\pi}{4} \leqq \theta \leqq \frac{\pi}{4} \right)$について,次の問いに答えよ.ただし,$a$は正の定数とする.

(1)$t=\sin \theta+\cos \theta$とおいて,$y$を$t$の関数で表せ.
(2)$t$のとりうる値の範囲を求めよ.
(3)$y$の最大値$M(a)$を求めよ.
(4)$M(a)$の最小値を求めよ.
釧路公立大学 公立 釧路公立大学 2014年 第2問
以下の各問に答えよ.

(1)$x$の$2$次方程式$x^2+ax+a+8=0$が異なる$2$つの実数解をもち,共に$1$より大きくなるような$a$の範囲を求めよ.
(2)${0}^{\circ} \leqq \theta \leqq {180}^{\circ}$のとき,関数$y=\sin^4 \theta-2 \sin^2 \theta+\cos^4 \theta$の最大値と最小値,およびそのときの$\theta$の値を求めよ.
福島県立医科大学 公立 福島県立医科大学 2014年 第3問
$a$を定数とする.関数$\displaystyle f(x)=\frac{1-a \cos x}{1+\sin x} (0 \leqq x \leqq \pi)$について,以下の問いに答えよ.

(1)$\displaystyle t=\frac{-\cos x}{1+\sin x} (0<x<\pi)$とおくとき,$\displaystyle \frac{dx}{dt}$を$t$で表せ.
(2)$f(x)$が$0<x<\pi$の範囲で極値をもつように$a$の値の範囲を定めよ.また,その極値を$a$で表せ.
(3)$a$が$(2)$で定めた範囲にあるとき,$2$点$(0,\ f(0))$,$(\pi,\ f(\pi))$を通る直線と$y=f(x)$のグラフで囲まれる図形を$x$軸の周りに回転してできる回転体の体積を$a$で表せ.
富山県立大学 公立 富山県立大学 2014年 第3問
$a,\ b$は定数とする.関数$f(x)=e^{-x} \sin x$,$g(x)=e^{-x} (a \cos x+b \sin x)$について,次の問いに答えよ.

(1)すべての$x$に対して$\displaystyle \frac{d}{dx}g(x)=f(x)$となるように$a,\ b$の値を定めよ.
(2)$(2k-1) \pi \leqq x \leqq 2k \pi (k=1,\ 2,\ 3,\ \cdots)$の範囲で,曲線$y=f(x)$と$x$軸で囲まれた図形の面積$S_k$を$k$の式で表せ.
(3)極限$\displaystyle \lim_{n \to \infty} \sum_{k=1}^n S_k$を求めよ.
広島市立大学 公立 広島市立大学 2014年 第1問
次の問いに答えよ.

(1)次の関数の導関数を求めよ.

(i) $\displaystyle y=\frac{x}{1+x+x^2}$

(ii) $y=(x^2+2x)e^{-x}$

(2)次の不定積分を求めよ.

(i) $\displaystyle \int x^2 \log x \, dx$

(ii) $\displaystyle \int \frac{\cos x}{\cos^2 x+2 \sin x-2} \, dx$

(3)$x>0$とする.無限等比級数
\[ 1+\log x+(\log x)^2+\cdots +(\log x)^n+\cdots \]
が収束するような$x$の値の範囲を求めよ.
広島市立大学 公立 広島市立大学 2014年 第4問
関数$f(x)=4 \sin x+(\pi-2x) \cos x (0 \leqq x \leqq \pi)$について,次の問いに答えよ.

(1)$f^\prime(x)$,$f^{\prime\prime}(x)$を求めよ.
(2)$f^\prime(x)$は$0 \leqq x \leqq \pi$で減少することを示せ.
(3)$f(x)$の増減および曲線$y=f(x)$の凹凸を調べよ.
(4)曲線$y=f(x)$,$x$軸,$y$軸および直線$x=\pi$で囲まれた部分の面積を求めよ.
秋田県立大学 公立 秋田県立大学 2014年 第1問
二つの関数$f(x)$と$g(x)$を次のように定める.
\[ \begin{array}{l}
f(x)=4x^2-8s(x+k)+s^4-s^2 \\
g(x)=8sx+s^4-4
\end{array} \]
ここで,$k$と$s$は実数の定数であり,$0<s \leqq 1$とする.また,$y=f(x)$のグラフは点$(0,\ s^4)$を通ることとする.以下の設問に答えよ.$(1)$は解答のみでよく,$(2)$~$(4)$は解答とともに導出過程も記述せよ.

(1)$k$を$s$で表せ.
(2)$f(x)$の最小値を$m$とする.$m$を$s$を用いて表せ.
(3)$y=f(x)$のグラフと$y=g(x)$のグラフが少なくとも一つの共有点をもつような$s$の値の範囲を求めよ.
(4)$s$の値が$(3)$で得られた範囲にあるとき,$m$の最大値と最小値を求めよ.また,そのときの$s$の値を求めよ.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。