タグ「関数」の検索結果

1ページ目:全2213問中1問~10問を表示)
京都大学 国立 京都大学 2016年 第5問
実数を係数とする$3$次式$f(x)=x^3+ax^2+bx+c$に対し,次の条件を考える.

\mon[(イ)] 方程式$f(x)=0$の解であるすべての複素数$\alpha$に対し,$\alpha^3$もまた$f(x)=0$の解である.
\mon[(ロ)] 方程式$f(x)=0$は虚数解を少なくとも$1$つもつ.

この$2$つの条件(イ),(ロ)を同時に満たす$3$次式をすべて求めよ.
京都大学 国立 京都大学 2016年 第1問
次の問いに答えよ.

(1)$n$を$2$以上の自然数とするとき,関数
\[ f_n(\theta)=(1+\cos \theta) \sin^{n-1} \theta \]
の$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$における最大値$M_n$を求めよ.
(2)$\displaystyle \lim_{n \to \infty}{(M_n)}^n$を求めよ.
京都大学 国立 京都大学 2016年 第6問
複素数を係数とする$2$次式$f(x)=x^2+ax+b$に対し,次の条件を考える.

\mon[(イ)] $f(x^3)$は$f(x)$で割り切れる.
\mon[(ロ)] $f(x)$の係数$a,\ b$の少なくとも一方は虚数である.

この$2$つの条件(イ),(ロ)を同時に満たす$2$次式をすべて求めよ.
東京海洋大学 国立 東京海洋大学 2016年 第5問
$f(x)=\sqrt{x}e^{-\frac{x}{2}}$(ただし,$x>0$)に対し,座標平面上の曲線$C:y=f(x)$を考える.

(1)$f(x)$の極値を求めよ.
(2)曲線$C$,$2$直線$x=t$,$x=t+1$(ただし,$t>0$)および$x$軸で囲まれる図形を,$x$軸の周りに$1$回転して得られる立体の体積$V$を$t$を用いて表せ.
(3)$V$の最大値を求めよ.
一橋大学 国立 一橋大学 2016年 第4問
$a$を実数とし,$f(x)=x^3-3ax$とする.区間$-1 \leqq x \leqq 1$における$|f(x)|$の最大値を$M$とする.$M$の最小値とそのときの$a$の値を求めよ.
大阪大学 国立 大阪大学 2016年 第3問
$1$以上$6$以下の$2$つの整数$a,\ b$に対し,関数$f_n(x) (n=1,\ 2,\ 3,\ \cdots)$を次の条件(ア),(イ),(ウ)で定める.

(ア) $f_1(x)=\sin (\pi x)$
(イ) $\displaystyle f_{2n}(x)=f_{2n-1} \left( \frac{1}{a}+\frac{1}{b}-x \right) \qquad (n=1,\ 2,\ 3,\ \cdots)$
(ウ) $f_{2n+1}(x)=f_{2n}(-x) \qquad \qquad \qquad \ \,\!(n=1,\ 2,\ 3,\ \cdots)$

以下の問いに答えよ.

(1)$a=2,\ b=3$のとき,$f_5(0)$を求めよ.
(2)$1$個のさいころを$2$回投げて,$1$回目に出る目を$a$,$2$回目に出る目を$b$とするとき,$f_6(0)=0$となる確率を求めよ.
神戸大学 国立 神戸大学 2016年 第2問
$a$を正の定数とし,$f(x)=|x^2+2ax+a|$とおく.以下の問に答えよ.

(1)$y=f(x)$のグラフの概形をかけ.
(2)$a=2$とする.すべての実数$x$に対して$f(x) \geqq 2x+b$が成り立つような実数$b$の取りうる値の範囲を求めよ.
(3)$\displaystyle 0<a \leqq \frac{3}{2}$とする.すべての実数$x$に対して$f(x) \geqq 2x+b$が成り立つような実数$b$の取りうる値の範囲を$a$を用いて表せ.また,その条件をみたす点$(a,\ b)$の領域を$ab$平面上に図示せよ.
神戸大学 国立 神戸大学 2016年 第2問
$a$を正の定数とし,$f(x)=|x^2+2ax+a|$とおく.以下の問に答えよ.

(1)$y=f(x)$のグラフの概形をかけ.
(2)$y=f(x)$のグラフが点$(-1,\ 2)$を通るときの$a$の値を求めよ.また,そのときの$y=f(x)$のグラフと$x$軸で囲まれる図形の面積を求めよ.
(3)$a=2$とする.すべての実数$x$に対して$f(x) \geqq 2x+b$が成り立つような実数$b$の取りうる値の範囲を求めよ.
北海道大学 国立 北海道大学 2016年 第2問
$a>0$に対し,関数$f(x)$が
\[ f(x)=\int_{-a}^a \left\{ \frac{e^{-x}}{2a}+f(t) \sin t \right\} \, dt \]
をみたすとする.

(1)$f(x)$を求めよ.
(2)$0<a \leqq 2 \pi$において,
\[ g(a)=\int_{-a}^a f(t) \sin t \, dt \]
の最小値とそのときの$a$の値を求めよ.
北海道大学 国立 北海道大学 2016年 第1問
$a,\ b,\ c$を実数とし,
\[ f(x)=x^3+ax^2+bx+c \]
とおく.曲線$C:y=f(x)$上に異なる$2$点$\mathrm{P}(s,\ f(s))$,$\mathrm{Q}(t,\ f(t))$がある.

(1)$\mathrm{P}$における$C$の接線の方程式を求めよ.
(2)$\mathrm{P}$における$C$の接線と$\mathrm{Q}$における$C$の接線が平行になるための条件を$s,\ t,\ a$の関係式として求めよ.
(3)$(2)$の条件のもとで,線分$\mathrm{PQ}$の中点が$C$上にあることを示せ.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。