タグ「関係」の検索結果

8ページ目:全230問中71問~80問を表示)
弘前大学 国立 弘前大学 2014年 第3問
$a>0$,$b>1$とする.関数$f_1(x)=-2x^2-x+3$と$f_2(x)=ax^2-a(b+1)x+ab$に対し,関数$f(x)$を$x \leqq 1$のとき$f(x)=f_1(x)$,$x>1$のとき$f(x)=f_2(x)$と定める.また関数$g(x)$を$\displaystyle g(x)=\int_{-\frac{3}{2}}^x f(t) \, dt$と定める.次の問いに答えよ.

(1)微分係数${f_1}^\prime(1)$と${f_2}^\prime(1)$が等しくなるための$a,\ b$の関係式を求めよ.
(2)$a,\ b$が$(1)$で求めた関係式を満たすとする.$g(x)$の最小値を$b$の値によって場合分けをして求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2014年 第1問
行列$A=\left( \begin{array}{cc}
0 & a \\
1 & -1
\end{array} \right)$,$E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$,$O=\left( \begin{array}{cc}
0 & 0 \\
0 & 0
\end{array} \right)$が$A^2+A+E=O$の関係を満足しているとき,次の問いに答えよ.ただし,$a$は実数とする.

(1)$a$の値を求めよ.
(2)$A^3$を,$(1)$で求めた$a$の値を用いて求めよ.
(3)$E+A+A^2+A^3+A^4+A^5+A^6+A^7+A^8+A^9+A^{10}$を,$(1)$で求めた$a$の値を用いて求めよ.
(4)$A$の逆行列$A^{-1}$を,$(1)$で求めた$a$の値を用いて求めよ.
鹿児島大学 国立 鹿児島大学 2014年 第1問
次の各問いに答えよ.

(1)三角形$\mathrm{ABC}$において辺$\mathrm{AB}$上に点$\mathrm{D}$を,辺$\mathrm{AC}$上に点$\mathrm{E}$をとり,線分$\mathrm{BE}$と線分$\mathrm{CD}$の交点を$\mathrm{F}$とする.点$\mathrm{A}$,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$が同一円周上にあり,さらに角のあいだに
\[ \angle \mathrm{AEB}=2 \angle \mathrm{ABE}=4 \angle \mathrm{ACD} \]
という関係が成り立つとき,$\angle \mathrm{BAC}$の値を求めよ.
(2)$4$個のさいころを同時に投げるとき,$3$の倍数の目のみが出る確率を求めよ.
(3)正の実数$x,\ y$に関する次の各命題の真偽を述べよ.また,真ならば証明し,偽ならば反例をあげよ.

(i) $x$が無理数かつ$y$が有理数ならば,その和$x+y$は無理数である.
(ii) $x$が無理数かつ$y$が無理数ならば,その和$x+y$は無理数である.
鹿児島大学 国立 鹿児島大学 2014年 第1問
次の各問いに答えよ.

(1)三角形$\mathrm{ABC}$において辺$\mathrm{AB}$上に点$\mathrm{D}$を,辺$\mathrm{AC}$上に点$\mathrm{E}$をとり,線分$\mathrm{BE}$と線分$\mathrm{CD}$の交点を$\mathrm{F}$とする.点$\mathrm{A}$,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$が同一円周上にあり,さらに角のあいだに
\[ \angle \mathrm{AEB}=2 \angle \mathrm{ABE}=4 \angle \mathrm{ACD} \]
という関係が成り立つとき,$\angle \mathrm{BAC}$の値を求めよ.
(2)$4$個のさいころを同時に投げるとき,$3$の倍数の目のみが出る確率を求めよ.
(3)正の実数$x,\ y$に関する次の各命題の真偽を述べよ.また,真ならば証明し,偽ならば反例をあげよ.

(i) $x$が無理数かつ$y$が有理数ならば,その和$x+y$は無理数である.
(ii) $x$が無理数かつ$y$が無理数ならば,その和$x+y$は無理数である.
鹿児島大学 国立 鹿児島大学 2014年 第1問
次の各問いに答えよ.

(1)三角形$\mathrm{ABC}$において辺$\mathrm{AB}$上に点$\mathrm{D}$を,辺$\mathrm{AC}$上に点$\mathrm{E}$をとり,線分$\mathrm{BE}$と線分$\mathrm{CD}$の交点を$\mathrm{F}$とする.点$\mathrm{A}$,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$が同一円周上にあり,さらに角のあいだに
\[ \angle \mathrm{AEB}=2 \angle \mathrm{ABE}=4 \angle \mathrm{ACD} \]
という関係が成り立つとき,$\angle \mathrm{BAC}$の値を求めよ.
(2)$4$個のさいころを同時に投げるとき,$3$の倍数の目のみが出る確率を求めよ.
(3)正の実数$x,\ y$に関する次の各命題の真偽を述べよ.また,真ならば証明し,偽ならば反例をあげよ.

(i) $x$が無理数かつ$y$が有理数ならば,その和$x+y$は無理数である.
(ii) $x$が無理数かつ$y$が無理数ならば,その和$x+y$は無理数である.
愛知教育大学 国立 愛知教育大学 2014年 第2問
平面上の四角形$\mathrm{ABCD}$において,$4$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$が次の$(ⅰ)$,$(ⅱ)$,$(ⅲ)$の条件をみたしているとする.

$(ⅰ)$ $\mathrm{AB}=1$,$\mathrm{BC}=5$,$\mathrm{CD}=6$,$\mathrm{DA}=10$
$(ⅱ)$ $3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{D}$は同じ直線上にはない.
$(ⅲ)$ $3$点$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$は同じ直線上にはない.

また,$\angle \mathrm{DAB}=\alpha$,$\angle \mathrm{BCD}=\beta$とし,線分$\mathrm{BD}$の長さを$d$とする.このとき,以下の問いに答えよ.

(1)$d^2$を$\alpha$を用いて表せ.
(2)$d^2$を$\beta$を用いて表せ.
(3)$\alpha,\ \beta$がみたす関係式を求めよ.
(4)四角形$\mathrm{ABCD}$が円に内接するとき,$\alpha,\ \beta$と円の半径$R$を求めよ.
鳥取大学 国立 鳥取大学 2014年 第4問
自然数$n$に対して,$1$から$2n$までのすべての自然数を次の条件(ア)および(イ)を満たすように並べた順列$[i_1,\ i_2,\ i_3,\ i_4,\ \cdots,\ i_{2n-1},\ i_{2n}]$の総数を$f(n)$とする.

(ア) $k=1,\ 2,\ \cdots,\ n$に対して$i_{2k-1}<i_{2k}$
(イ) $n \geqq 2$ならば$i_1<i_3<\cdots<i_{2n-1}$

たとえば$n=1$のとき条件(ア)を満たす順列は$[1,\ 2]$のみであるから$f(1)=1$となる.

(1)$f(2),\ f(3)$を求めよ.
(2)$n=2,\ 3,\ \cdots$とするとき,$f(n)$と$f(n-1)$の間の関係式を求めよ.
(3)$f(n)$を求めよ.
鳥取大学 国立 鳥取大学 2014年 第3問
$1$以上の整数$p,\ q$に対し,$\displaystyle B(p,\ q)=\int_0^1 x^{p-1}(1-x)^{q-1} \, dx$とおく.次の問いに答えよ.

(1)$B(p,\ q)=B(q,\ p)$が成り立つことを示せ.
(2)関係式
\[ B(p,\ q+1)=\frac{q}{p} B(p+1,\ q) \qquad B(p+1,\ q)+B(p,\ q+1)=B(p,\ q) \]
が成り立つことを示せ.
(3)関係式
\[ B(p+1,\ q)=\frac{p}{p+q} B(p,\ q) \qquad B(p,\ q+1)=\frac{q}{p+q} B(p,\ q) \]
が成り立つことを示せ.
(4)$B(5,\ 4)$を求めよ.
鳥取大学 国立 鳥取大学 2014年 第4問
$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$を満たす実数$\theta$に対して,関係式
\[ \frac{x^2}{(\cos \theta+2)^2}+\frac{y^2}{(\sin \theta+3)^2}=1 \]
を満たす第$1$象限内の点で,積$xy$の値を最大にする点を$\mathrm{P}(\theta)$とする.

(1)$\mathrm{P}(0)$の座標を求めよ.
(2)$\displaystyle \mathrm{P}(\theta) \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right)$の軌跡の方程式を求めよ.
九州工業大学 国立 九州工業大学 2014年 第4問
点$\mathrm{P}$は次の$①$,$②$,$③$の規則に従って数直線上を動く.

\mon[$①$] 時刻$0$で,$\mathrm{P}$は整数座標点$0$から$10$のいずれかの位置$i (0 \leqq i \leqq 10)$にある.
\mon[$②$] 時刻$t (t=0,\ 1,\ 2,\ \cdots)$に位置$i (1 \leqq i \leqq 9)$にある$\mathrm{P}$は,$t+1$には確率$\displaystyle p \left( 0<p<\frac{1}{2} \right)$で位置$i+1$に,確率$1-p$で位置$i-1$に移動する.
\mon[$③$] 時刻$t$に位置$0$または$10$にある$\mathrm{P}$は,$t+1$にもその位置に留まる.

以下の問いに答えよ.

(1)$\mathrm{P}$が時刻$0$で位置$2$にあるとき,時刻$3$で位置$0$にある確率を求めよ.
(2)$\mathrm{P}$が時刻$0$で位置$1$にあるとき,時刻$3$で位置$0$にある確率を求めよ.
時刻$0$で位置$i$にある$\mathrm{P}$が,いずれかの時刻で位置$0$に到達する確率を$q_i$とする.ただし,$q_0=1$,$q_{10}=0$である.$1 \leqq i \leqq 9$のとき,$q_{i+1}$,$q_i$,$q_{i-1}$の間には$q_i=pq_{i+1}+(1-p)q_{i-1}$の関係が成り立つ.
(3)$q_{i+1}-q_i=[ ](q_i-q_{i-1})$である.空欄に入る適切な数または式を求めよ.
(4)$q_i$を$q_1$と$p$を用いて表せ.
(5)$q_1$を求め,$q_i$を$p$を用いて表せ.
スポンサーリンク

「関係」とは・・・

 まだこのタグの説明は執筆されていません。