タグ「関係」の検索結果

7ページ目:全230問中61問~70問を表示)
北海道大学 国立 北海道大学 2014年 第3問
逆行列をもつ$2$次の正方行列,$A_1,\ A_2,\ A_3,\ \cdots$が,関係式
\[ A_{n+1}A_n=A_n+2E \quad (n=1,\ 2,\ 3,\ \cdots) \]
をみたすとする.さらに$A_1+E$は逆行列をもつとする.ここで$E$は$2$次の単位行列とする.

(1)すべての自然数$n$に対して$A_n+E$は逆行列をもち,
\[ (A_{n+1}+E)^{-1}=\frac{1}{2}A_n(A_n+E)^{-1} \]
が成立することを示せ.
(2)$B_n=(2E-A_n)(A_n+E)^{-1}$により,行列$B_n$を定める.$B_{n+1}$と$B_n$との間に成立する関係式を求め,$B_n$を$B_1$と$n$を用いて表せ.
埼玉大学 国立 埼玉大学 2014年 第4問
関数$f_0(x)$,$f_1(x)$,$f_2(x)$,$f_3(x)$,$f_4(x)$は,$n=0,\ 1,\ 2,\ 3$に対して,$f_n(0)$が$0$に一致しないときか一致するときかという場合に応じて$f_{n+1}(x)$を$f_n(x)$から定める関係式
\[ f_{n+1}(x)=\left\{ \begin{array}{ll}
\displaystyle \frac{d}{dx}f_n(x) & (f_n(0) \neq 0) \\ \\
\displaystyle \int_0^x f_n(t) \, dt+1 & (f_n(0)=0)
\end{array} \right. \]
をみたしているとする.

(1)$f_0(x)=x$のとき,$f_4(x)$を求めよ.
(2)$f_1(x)=0$ならば,$f_0(x)$は定数であることを証明せよ.
(3)$f_2(x)=0$ならば,$f_0(x)=ax+b$($a,\ b$は定数)と表されることを証明せよ.
筑波大学 国立 筑波大学 2014年 第6問
$xy$平面上に楕円
\[ C_1:\frac{x^2}{a^2}+\frac{y^2}{9}=1 \quad (a>\sqrt{13}) \]
および双曲線
\[ C_2:\frac{x^2}{4}-\frac{y^2}{b^2}=1 \quad (b>0) \]
があり,$C_1$と$C_2$は同一の焦点をもつとする.また$C_1$と$C_2$の交点
\[ \mathrm{P} \left( 2 \sqrt{1+\frac{t^2}{b^2}},\ t \right) \quad (t>0) \]
における$C_1$,$C_2$の接線をそれぞれ$\ell_1$,$\ell_2$とする.

(1)$a$と$b$の間に成り立つ関係式を求め,点$\mathrm{P}$の座標を$a$を用いて表せ.
(2)$\ell_1$と$\ell_2$が直交することを示せ.
(3)$a$が$a>\sqrt{13}$を満たしながら動くときの点$\mathrm{P}$の軌跡を図示せよ.
静岡大学 国立 静岡大学 2014年 第3問
$p$を$\displaystyle 0<p<\frac{1}{6}$を満たす実数とする.次のように数列$\{a_n\}$を帰納的に定義する.$a_1=0$とし,第$n$項$a_n$を用いた関数
\[ f_n(x)=2x^3-3px^2+6a_nx-1 \]
が極大値と極小値をもつならば,第$n+1$項$a_{n+1}$を$f_n(x)$の極大値と極小値の和により定める.そうでないならば,$a_{n+1}=0$と定める.このとき,次の問いに答えよ.

(1)$f_1(x)$が極大値と極小値をもつことを示し,$a_2$を$p$を用いて表せ.
(2)$k$を自然数とする.関数$f_k(x)$が極大値と極小値をもつならば,関数$f_{k+1}(x)$も極大値と極小値をもつことを示せ.
(3)$a_{n+1}$と$a_n$の関係式を$p$を用いて表せ.
(4)一般項$a_n$を$p$を用いて表せ.
静岡大学 国立 静岡大学 2014年 第4問
$p$を$\displaystyle 0<p<\frac{1}{6}$を満たす実数とする.次のように数列$\{a_n\}$を帰納的に定義する.$a_1=0$とし,第$n$項$a_n$を用いた関数
\[ f_n(x)=2x^3-3px^2+6a_nx-1 \]
が極大値と極小値をもつならば,第$n+1$項$a_{n+1}$を$f_n(x)$の極大値と極小値の和により定める.そうでないならば,$a_{n+1}=0$と定める.このとき,次の問いに答えよ.

(1)$f_1(x)$が極大値と極小値をもつことを示し,$a_2$を$p$を用いて表せ.
(2)$k$を自然数とする.関数$f_k(x)$が極大値と極小値をもつならば,関数$f_{k+1}(x)$も極大値と極小値をもつことを示せ.
(3)$a_{n+1}$と$a_n$の関係式を$p$を用いて表せ.
(4)一般項$a_n$を$p$を用いて表せ.
東京工業大学 国立 東京工業大学 2014年 第3問
$1$個のさいころを投げて,出た目が$1$か$2$であれば行列$A=\left( \begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array} \right)$を,出た目が$3$か$4$であれば行列$B=\left( \begin{array}{cc}
0 & -1 \\
1 & 0
\end{array} \right)$を,出た目が$5$か$6$であれば行列$C=\left( \begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array} \right)$を選ぶ.そして,選んだ行列の表す$1$次変換によって$xy$平面上の点$\mathrm{R}$を移すという操作を行う.点$\mathrm{R}$は最初は点$(0,\ 1)$にあるものとし,さいころを投げて点$\mathrm{R}$を移す操作を$n$回続けて行ったときに点$\mathrm{R}$が点$(0,\ 1)$にある確率を$p_n$,点$(0,\ -1)$にある確率を$q_n$とする.

(1)$p_1,\ p_2$と$q_1$,$q_2$を求めよ.
(2)$p_n+q_n$と$p_{n-1}+q_{n-1}$の関係式を求めよ.また,$p_n-q_n$と$p_{n-1}-q_{n-1}$の関係式を求めよ.
(3)$p_n$を$n$を用いて表せ.
金沢大学 国立 金沢大学 2014年 第1問
放物線$C:y=x^2+2x$上の$2$点$(a,\ a^2+2a)$,$(b,\ b^2+2b)$における接線をそれぞれ$\ell_a$,$\ell_b$とするとき,次の問いに答えよ.ただし,$a<b$とする.

(1)$2$直線$\ell_a,\ \ell_b$の方程式を求めよ.また,$\ell_a$と$\ell_b$の交点の$x$座標を求めよ.
(2)放物線$C$と$2$直線$\ell_a,\ \ell_b$とで囲まれた図形の面積$S$を求めよ.
(3)$2$直線$\ell_a,\ \ell_b$が垂直に交わるように$a,\ b$が動くとき,$a,\ b$がみたす関係式を求めよ.また,そのときの面積$S$の最小値とそれを与える$a,\ b$の値を求めよ.
信州大学 国立 信州大学 2014年 第3問
$a$を正の数とする.このとき,次の関係式をみたす関数$f(x)$を求めよ.
\[ f(x)=\int_0^{\frac{\pi}{a}} f(t) \cos (at-2ax) \, dt+1 \]
信州大学 国立 信州大学 2014年 第3問
$\mathrm{O}$を原点とする座標空間の$2$点$\mathrm{P}(\cos t,\ \sin t,\ 0)$,$\mathrm{Q}(\cos 2t,\ \sin 2t,\ \cos t)$について,次の問いに答えよ.ただし,$0 \leqq t \leqq 2\pi$とする.

(1)$2$つのベクトル$\overrightarrow{\mathrm{OP}}$,$\overrightarrow{\mathrm{OQ}}$は平行でないことを示せ.
(2)三角形$\mathrm{OPQ}$の面積$S(t)$は$t$の値に関係なく一定であることを示せ.
(3)$\overrightarrow{\mathrm{OP}}$,$\overrightarrow{\mathrm{OQ}}$のなす角$\theta(t)$のとる値の範囲を求めよ.
岩手大学 国立 岩手大学 2014年 第4問
連続な関数$f(x)$が以下の関係式を満たすとき,次の問いに答えよ.
\[ \int_a^x (x-t)f(t) \, dt=2 \sin x-x+b \]
ただし,$a,\ b$は定数であり,$\displaystyle 0 \leqq a \leqq \frac{\pi}{2}$である.

(1)$\displaystyle \int_a^x f(t) \, dt$を求めよ.

(2)$f(x)$を求めよ.
(3)定数$a,\ b$の値を求めよ.

(4)$\displaystyle \int_\pi^{\frac{3}{2}\pi} \{f(x)\}^3 \, dx$を求めよ.
スポンサーリンク

「関係」とは・・・

 まだこのタグの説明は執筆されていません。