タグ「関係」の検索結果

19ページ目:全230問中181問~190問を表示)
信州大学 国立 信州大学 2011年 第1問
次の問いに答えよ.

(1)$4$人でじゃんけんを$2$回するとき,$2$回ともあいこになる確率を求めよ.
(2)次の関係式
\[ a_1 = -1,\ a_{n+1} = 2a_n(1-a_n) \quad (n = 1,\ 2,\ 3,\ \cdots) \]
で定められる数列$\{a_n\}$は,$1-2a_{n+1} = (1-2a_n)^2$を満たすことを示し,一般項$a_n$を求めよ.
(3)$\overrightarrow{\mathrm{0}}$でない$2$つのベクトル$\overrightarrow{a}$,$\overrightarrow{b}$について,$|\overrightarrow{a}| = 2|\overrightarrow{b}|$および$|\overrightarrow{a}+2\overrightarrow{b}|=2|\overrightarrow{a}-\overrightarrow{b}|$が成り立つとき,$\overrightarrow{a}$と$\overrightarrow{b}$のなす角$\theta$を求めよ.
弘前大学 国立 弘前大学 2011年 第6問
行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$が次の条件を満たしているものとする.
\[ A \left( \begin{array}{c}
1 \\
1
\end{array} \right) = \left( \begin{array}{c}
\sqrt{\frac{1}{2}} \\
\sqrt{\frac{3}{2}}
\end{array} \right) \quad A \left( \begin{array}{c}
-1 \\
1
\end{array} \right) = \left( \begin{array}{c}
-\sqrt{\frac{3}{2}} \\
\sqrt{\frac{1}{2}}
\end{array} \right) \]
このとき,次の問いに答えよ.

(1)$A$および$A^2$を求めよ.
(2)Oを座標平面上の原点とし,Oと異なる点P$(x_1,\ y_1)$があり,他の2点Q$(x_2,\ y_2)$,R$(x_3,\ y_3)$に対して次の関係があるとする.
\[ \left( \begin{array}{c}
x_2 \\
y_2
\end{array} \right) = A^3 \left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right) \qquad \left( \begin{array}{c}
x_3 \\
y_3
\end{array} \right) = A^{-1} \left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right) \]
このとき,三角形OQRが正三角形であることを証明せよ.
(3)点P,Qは(2)と同じものとする.$\angle \text{OPQ}$の大きさを求めよ.
三重大学 国立 三重大学 2011年 第4問
関数$\displaystyle f(x)=-\frac{1}{2x}+\tan x,\ g(x)=x\cos (x^2)$について以下の問いに答えよ.

(1)$\displaystyle 0< \alpha < \frac{\pi}{2}$の範囲にある$\alpha$で$f(\alpha)=0$となるものがただひとつ存在することを示せ.
(2)閉区間$\displaystyle \left[\; 0,\ \sqrt{\frac{\pi}{2}} \; \right]$における$g(x)$の増減表を書け.必要ならば(1)の$\alpha$を用いてよい.
(3)$\displaystyle 0< \beta < \sqrt{\frac{\pi}{2}}$の範囲にあり$g^{\prime}(\beta)=0$を満たす$\beta$を(1)の$\alpha$を用いて表せ.また$g(x)=x \cos (x^2) \ (0 \leqq x \leqq \beta)$の逆関数を$h(x)$とする.このとき$y=g(x)$のグラフと$y=h(x)$のグラフの関係に注意して,定積分$\displaystyle \int_0^{g(\beta)} h(x) \, dx$を$\alpha$を用いて表せ.
電気通信大学 国立 電気通信大学 2011年 第4問
直線$\ell:y=2x$の法線ベクトルを$\overrightarrow{n}=(a,\ b)$とし,点P$(x,\ y)$と直線$\ell$との距離を$h$とする.ただし,$|\overrightarrow{n}|=1$で,$a>0$とする.以下の問いに答えよ.

(1)$\overrightarrow{n}$の成分$a,\ b$を求めよ.
(2)原点をOとし,$\overrightarrow{\mathrm{0}}$でない$\overrightarrow{\mathrm{OP}}$に対し,$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{n}$のなす角を$\theta$とする.このとき,$h$を$|\overrightarrow{\mathrm{OP}}|$と$\theta$を用いて表せ.また,$h$を$x,\ y$を用いて表せ.

以下では,曲線$C$を,点A$(1,\ 0)$と直線$\ell$からの距離が等しい点P$(x,\ y)$の軌跡とする.

\mon[(3)] 曲線$C$の方程式($x,\ y$の関係式)を求めよ.
\mon[(4)] 曲線$C$と直線$y=t \ (t \text{は定数})$との共有点の個数を求めよ.
\mon[(5)] 曲線$C$と直線$y=t$が2個の共有点Q,Rをもつとき,線分QRの長さを$t$を用いて表せ.
\mon[(6)] 曲線$C$と直線$y=0$とで囲まれる部分の面積$S$を求めよ.
福島大学 国立 福島大学 2011年 第3問
以下の問いに答えなさい.

(1)2つの容器 A,Bがある.はじめAの容器には100gの純水が,Bの容器には濃度$s\,\%$の食塩水100gが入っている.Aの3分の1を捨て,捨てた量と同じ重さ(g)のBの食塩水をAの容器に移したのち,Aをよく混ぜる操作を考える.この操作を$k$回行った後のAの食塩水に含まれる食塩の重さ(g)を$w_k$とする$(k=1,\ 2,\ 3)$.$w_1,\ w_2,\ w_3$を$s$を用いて表しなさい.
(2)上記(1)の操作の後,A,Bの溶液を捨て,改めてAの容器には100gの純水を,Bの容器には濃度$s\,\%$の食塩水100gを入れる.自然数$n$について,Aの$n$分の1を捨て,捨てた量と同じ重さ(g)のBの食塩水をAの容器に移したのちAをよく混ぜる操作を考える.この操作を$k$回行った後のAの濃度を$a_k\ (\%)$とする$(1 \leqq k \leqq n)$.$1 \leqq k \leqq n-1$のとき,$a_{k+1}$と$a_k$との関係を$s$と$n$を用いて表しなさい.さらに$a_n$を求めなさい.
帯広畜産大学 国立 帯広畜産大学 2011年 第1問
自然数$n$について,$\{a_n\}$は初項$a$,公差$d$の等差数列であり,$\{b_n\}$は初項$b$,公比$r$の等比数列である.数列$\{a_n\}$の一般項を$a_n$で表し,その初項から第$n$項までの和を$S_a$とする.また,数列$\{b_n\}$の一般項を$b_n$で表し,その初項から第$n$項までの和を$S_b$とする.次の各問に解答しなさい.

(1)$d=2a,\ a \neq 0$とする.

(i) $d$と$n$を用いて$a_n$を表しなさい.また,$a$と$n$を用いて$S_a$を表しなさい.
(ii) 不等式$6a_n<a_{n+1}+27d$および$2a_n>a_{n+1}$を満たすすべての$n$の値を求めなさい.

(2)$r=2b+1,\ b \neq 0$とする.

(i) $b$と$n$を用いて$b_n$を表しなさい.また,$r$と$n$を用いて$S_b$を表しなさい.
(ii) $\displaystyle \log_2 b_n > \log_2 b_{n+1}+\frac{1}{2}$であるとき,$r$の値の範囲を求めなさい.

(3)$A$と$B$はいずれも$2 \times 2$行列であり,それぞれ$A=\left( \begin{array}{cc}
d & 2d-1 \\
1 & d
\end{array} \right),\ B=A^2$と定義される.また,行列$B$の$(1,\ 1)$成分を$g$とし,行列$A$が与えられたときの$a$と$b$の関係は次の連立1次方程式を満たすものとする.
\[ A \left( \begin{array}{c}
a \\
b
\end{array} \right)=\left( \begin{array}{c}
-9 \\
1
\end{array} \right) \]

(i) $d$を用いて$g$を表しなさい.また,$g$が最小値をとるときの$d$の値を求めなさい.
(ii) $g$が最小値をとるとき,$A$の逆行列$A^{-1}$を求め,さらに$a$と$b$の値を求めなさい.また,$r \neq 1,\ r>0,\ n=3$および$S_a=2S_b$であるとき,$S_a$と$r$の値を求めなさい.
山形大学 国立 山形大学 2011年 第1問
座標空間内に$2$点$\mathrm{A}(0,\ 2,\ 1)$,$\mathrm{B}(2,\ -1,\ 2)$があり,点$\mathrm{P}(x,\ y,\ 0)$は$\overrightarrow{\mathrm{PA}} \perp \overrightarrow{\mathrm{PB}}$を満たしながら動くものとする.このとき,次の問に答えよ.

(1)$\overrightarrow{\mathrm{PA}}$と$\overrightarrow{\mathrm{PB}}$を成分で表せ.
(2)$x$と$y$が満たすべき関係式を求めよ.
(3)$x$と$y$が$(2)$の関係式を満たすとき,$2x-3y$の値の範囲を求めよ.
(4)三角形$\mathrm{PAB}$の面積の最大値を求めよ.また,そのときの$\angle \mathrm{PAB}$の大きさを求めよ.
山形大学 国立 山形大学 2011年 第4問
座標空間内に2点A$(0,\ 2,\ 1)$,B$(2,\ -1,\ 2)$があり,点P$(x,\ y,\ 0)$は$\overrightarrow{\mathrm{PA}} \perp \overrightarrow{\mathrm{PB}}$を満たしながら動くものとする.このとき,次の問に答えよ.

(1)$\overrightarrow{\mathrm{PA}}$と$\overrightarrow{\mathrm{PB}}$を成分で表せ.
(2)$x$と$y$が満たすべき関係式を求めよ.
(3)$x$と$y$が(2)の関係式を満たすとき,$2x-3y$の値の範囲を求めよ.
(4)三角形PABの面積の最大値を求めよ.また,そのときの$\angle \text{PAB}$の大きさを求めよ.
奈良教育大学 国立 奈良教育大学 2011年 第2問
自然数$n$に対して$\displaystyle I_n=\int_0^{\frac{\pi}{2}} \cos^n x \, dx$と置く.このとき,以下の設問に答えよ.

(1)$\displaystyle I_n=\int_0^{\frac{\pi}{2}} (\cos^{n-1} x)(\sin x)^\prime \, dx$と書きなおし,部分積分を適用して$I_n$と$I_{n-2}$の関係式を求めよ.但し$n \geqq 3$とする.
(2)$I_5$を求めよ.
宮崎大学 国立 宮崎大学 2011年 第4問
各辺の長さが1の正三角形OABがある.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}}$とおき,線分ABを$1:2$に内分する点をCとする.さらに,2点P,Qは,正の実数$k,\ l$について,$\overrightarrow{\mathrm{OP}}=k \overrightarrow{\mathrm{OB}},\ \overrightarrow{\mathrm{OQ}}=l \overrightarrow{\mathrm{OC}}$を満たすものとする.このとき,次の各問に答えよ.

(1)3点A,P,Qが一直線上にあるとき,$k$と$l$の関係式を求めよ.
(2)3点A,P,Qが一直線上にないものとし,$\triangle$APQの重心が$\angle$AOBの二等分線上にあるとする.このとき,$k$と$l$の関係式を求めよ.
(3)(2)のもとで,$\text{AP}=\text{AQ}$となるとき,$k$の値を求めよ.
スポンサーリンク

「関係」とは・・・

 まだこのタグの説明は執筆されていません。