タグ「関係」の検索結果

18ページ目:全230問中171問~180問を表示)
中央大学 私立 中央大学 2012年 第3問
座標平面において,原点$\mathrm{O}(0,\ 0)$を中心とする半径$1$の円を$C_0$とし,点$\displaystyle \mathrm{A} \left( \frac{1}{2},\ 0 \right)$を中心とする半径が$\displaystyle \frac{1}{2}$の円を$C_1$とする.以下の問いに答えよ.

(1)円$C_0$と内接し,円$C_1$と外接する円$D$の半径を$r$,中心$\mathrm{G}$の座標を$(\alpha,\ \beta)$とするとき,$r$を$\alpha$によって表せ.
(2)中心$\mathrm{G}(\alpha,\ \beta)$の軌跡の方程式を求めよ.
以上で考察した円$D$は無数にあるが,これらの円はどれも点$\displaystyle \mathrm{B}(\frac{1}{3},\ 0)$を中心とする半径$\displaystyle \frac{2}{3}$の円$C_2$と特別な位置関係にある.以下ではこのことを調べてみよう.円$D$と円$C_2$の$2$つの交点を$\mathrm{P}$,$\mathrm{Q}$とする.
(3)直線$\mathrm{PQ}$の方程式を$\alpha,\ \beta$により表せ.
(4)点$\mathrm{P}$の座標$(X,\ Y)$が直線$\mathrm{PQ}$の方程式と円$C_2$の方程式を満たしていることを利用して,$\overrightarrow{\mathrm{BP}} \cdot \overrightarrow{\mathrm{GP}}=0$を示せ.
首都大学東京 公立 首都大学東京 2012年 第4問
内角がすべて$180^\circ$より小さい四角形$\mathrm{ABCD}$に対し,$\overrightarrow{a}=\overrightarrow{\mathrm{AB}},\ \overrightarrow{b}=\overrightarrow{\mathrm{AD}}$とおく.$\mathrm{G}$は
\[ \overrightarrow{\mathrm{GA}} +\overrightarrow{\mathrm{GB}} + \overrightarrow{\mathrm{GC}} + \overrightarrow{\mathrm{GD}} = \overrightarrow{\mathrm{0}} \]
を満たす点とする.$\overrightarrow{\mathrm{AC}}=s\overrightarrow{a}+t\overrightarrow{b} \quad (s,\ t \text{は正の実数})$と表すとき,以下の問いに答えなさい.

(1)$\overrightarrow{\mathrm{AG}}$を$\overrightarrow{a},\ \overrightarrow{b}$と実数$s,\ t$を用いて表しなさい.
(2)点$\mathrm{G}$が線分$\mathrm{BD}$上にあるとき,$s$と$t$の満たす関係式を求めなさい.
(3)$s$と$t$が$(2)$で求めた関係式を満たすとき,線分$\mathrm{AC}$の中点は線分$\mathrm{BD}$上にあることを示しなさい.
(4)$s$と$t$が$(2)$で求めた関係式を満たすとき,$\triangle \mathrm{ABD}$と$\triangle \mathrm{BCD}$の面積は等しくなることを示しなさい.
公立はこだて未来大学 公立 公立はこだて未来大学 2012年 第1問
以下の問いに答えよ.

(1)$a$と$b$を正の実数とするとき,不等式$a+b \geqq 2\sqrt{ab}$が成り立つことを示せ.また,等号が成り立つのは,どのようなときか.
(2)$p$と$q$を$1$より大きい実数とするとき,$\log_pq+4\log_qp$の最小値を求めよ.また,その最小値をとるのは,$p$と$q$がどのような関係をみたすときか.
公立はこだて未来大学 公立 公立はこだて未来大学 2012年 第5問
第$1$象限において,方程式$x^2+y^2=1$で与えられる図形を$C$で表す.方程式$\displaystyle \frac{x}{a}+\frac{y}{b}=1$で与えられる直線を$\ell$で表す.ただし,$a$と$b$は正の定数とする.以下の問いに答えよ.

(1)$b<1$のとき,図形$C$と直線$\ell$が共有点を持たないような$a$の範囲を求めよ.
(2)$b>1$のとき,図形$C$と直線$\ell$が共有点を持たないのは,$a$と$b$がどのような関係をみたすときか.
公立はこだて未来大学 公立 公立はこだて未来大学 2012年 第6問
以下の問いに答えよ.

(1)$2$つの行列$M=\left( \begin{array}{cc}
p & q \\
r & s
\end{array} \right)$と$N=\left( \begin{array}{cc}
p & r \\
q & s
\end{array} \right)$が,
\[ M \left( \begin{array}{cc}
0 & -1 \\
1 & 0
\end{array} \right) N= \left( \begin{array}{cc}
0 & -1 \\
1 & 0
\end{array} \right) \]
をみたすのは,$p,\ q,\ r,\ s$の間にどのような関係が成り立つときか.
(2)行列$M=\left( \begin{array}{cc}
p & q \\
r & s
\end{array} \right)$が,(1)で求めた関係をみたしているとする.行列$M$の表す$1$次変換による,点$\mathrm{A}(q,\ -p)$の像を点$\mathrm{C}$,点$\mathrm{B}(s,\ -r)$の像を点$\mathrm{D}$とする.座標平面の原点を$\mathrm{O}$とするとき,三角形$\mathrm{OCD}$の面積を求めよ.
福岡女子大学 公立 福岡女子大学 2012年 第2問
放物線$y=x^2$の$2$つの接線が直交しており,接点を$\mathrm{P}$,$\mathrm{Q}$としその$x$座標をそれぞれ$s,\ t$とする.次の問に答えなさい.

(1)$s$と$t$の関係式を求めなさい.
(2)$2$点$\mathrm{P}$,$\mathrm{Q}$を結ぶ線分は,接線のとり方に関係なく常に$y$軸上のある定点を通ることを示しなさい.
福岡女子大学 公立 福岡女子大学 2012年 第2問
放物線$y=x^2$の$2$つの接線が直交しており,接点を$\mathrm{P}$,$\mathrm{Q}$としその$x$座標をそれぞれ$s,\ t$とする.次の問に答えなさい.

(1)$s$と$t$の関係式を求めなさい.
(2)$2$点$\mathrm{P}$,$\mathrm{Q}$を結ぶ線分は,接線のとり方に関係なく常に$y$軸上のある定点を通ることを示しなさい.
奈良県立医科大学 公立 奈良県立医科大学 2012年 第4問
整数$m$が与えられたとき,$x$に関する整数係数の$2$つの整式$f(x)$,$g(x)$が関係式
\[ f(x) \equiv g(x) \pmod m \]
を満たすとは,等式$f(x)-g(x)=mh(x)$を満たすような整数係数の整式$h(x)$が存在することである.

(1)$f(x),\ g(x),\ F(x),\ G(x)$を整数係数の整式とする.もし,ある整数$m$について関係式$f(x) \equiv g(x) \pmod m$,かつ$F(x) \equiv G(x) \pmod m$が満たされるならば,関係式$f(x)+F(x) \equiv g(x)+G(x) \pmod m$,かつ$f(x)F(x) \equiv g(x)G(x) \pmod m$が満たされることを証明せよ.
(2)正整数$p (>1)$を素数とする.$p$より小さい任意の正整数$i$に対して二項係数$\comb{p}{i}$は$p$の倍数であることを証明せよ.
(3)正整数$p (>1)$を素数とする.任意の正整数$n$について,関係式
\[ (1+x)^{p^n} \equiv 1+x^{p^n} \pmod p \]
が満たされることを証明せよ.
(4)正整数$p (>1)$を素数とし,$n$を$2$以上の正整数とする.$n-1$個の二項係数$\comb{n}{i} (1 \leqq i \leqq n-1)$がすべて$p$の倍数であるための必要十分条件は,整数$n$が素数$p$の正べきである(すなわち,適当な正整数$k$を用いて$n=p^k$と表せる)ことを証明せよ.
千葉大学 国立 千葉大学 2011年 第8問
$n$段の階段を上るのに,一歩で1段,2段,または3段を上ることができるとする.この階段の上り方の総数を$a_n$とおく.たとえば,$a_1 = 1,\ a_2 = 2,\ a_3 = 4$である.

(1)$a_4,\ a_5$の値を求めよ.
(2)$a_n,\ a_{n+1},\ a_{n+2},\ a_{n+3} \ (n \geqq 1)$の間に成り立つ関係式を求めよ.
(3)$a_{10}$の値を求めよ.
信州大学 国立 信州大学 2011年 第3問
数列$\{a_n\},\ \{b_n\}$が次のように定められている.
\begin{eqnarray}
& & a_1 = \frac{\sqrt{3}}{2},\quad b_1 =\frac{1}{2} \nonumber \\
& & a_{n+1} = \frac{1}{2}a_n + \frac{\sqrt{3}}{2}b_n \quad (n = 1,\ 2,\ 3,\ \cdots) \nonumber \\
& & b_{n+1} = -\frac{\sqrt{3}}{2}a_n + \frac{1}{2}b_n \quad (n = 1,\ 2,\ 3,\ \cdots) \nonumber
\end{eqnarray}

(1)$a_n^2 +b_n^2$を求めなさい.
(2)$a_{n+3}$と$a_n$の関係式および$b_{n+3}$と$b_n$の関係式をそれぞれ求めなさい.
(3)$a_n,\ b_n$を求めなさい.
スポンサーリンク

「関係」とは・・・

 まだこのタグの説明は執筆されていません。