タグ「関係」の検索結果

14ページ目:全230問中131問~140問を表示)
福岡女子大学 公立 福岡女子大学 2013年 第2問
$m>0$,$n>0$とする.座標平面の$x$軸上に原点$\mathrm{O}$をはさんで左側に点$\mathrm{B}$,右側に点$\mathrm{C}$があり,線分$\mathrm{BC}$の長さを$c$とする.ただし,点$\mathrm{B}$と点$\mathrm{C}$は共に点$\mathrm{O}$と異なるものとする.以下の問に答えなさい.

(1)原点$\mathrm{O}$が線分$\mathrm{BC}$を$m:n$に内分するとき,$\mathrm{B}$,$\mathrm{C}$の$x$座標を$m,\ n,\ c$を用いて表しなさい.
(2)座標平面上の任意の点$\mathrm{A}(a,\ b)$は,次の関係式を満たすことを示しなさい.
\[ \frac{n}{m+n} \mathrm{AB}^2+\frac{m}{m+n} \mathrm{AC}^2=\mathrm{AO}^2+\frac{n}{m} \mathrm{BO}^2 \]
名古屋市立大学 公立 名古屋市立大学 2013年 第3問
次の問いに答えよ.

(1)$\displaystyle \int_0^\pi e^x \sin x \, dx$および$\displaystyle \int_0^\pi e^x \cos x \, dx$を求めよ.

(2)$\displaystyle \int_0^\pi xe^x \sin x \, dx$および$\displaystyle \int_0^\pi xe^x \cos x \, dx$を求めよ.

(3)次の関係を満足する関数$f(x),\ g(x)$を求めよ.
\[ \left\{ \begin{array}{l}
f(x)=e^x \sin x+\int_0^\pi ug(u) \, du \\ \\
g(x)=e^x \cos x+\int_0^\pi uf(u) \, du
\end{array} \right. \]
名古屋市立大学 公立 名古屋市立大学 2013年 第2問
逆行列をもつ行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$によって表される$1$次変換を考える.以下の問いに答えよ.

(1)この変換によって$xy$平面上の任意の$2$点$\mathrm{P}(x_1,\ y_1)$および$\mathrm{Q}(x_2,\ y_2)$がそれぞれ$\mathrm{P}^\prime ({x_1}^\prime,\ {y_1}^\prime)$および$\mathrm{Q}^\prime ({x_2}^\prime,\ {y_2}^\prime)$に移されるとき,$2$点間の距離が変換によって変化しない,つまり,$|\overrightarrow{\mathrm{PQ}}|^2=|\overrightarrow{\mathrm{P}^\prime \mathrm{Q}^\prime}|^2$であるための必要十分条件は,
\[ A^\mathrm{T}A=E \qquad \cdots\cdots (*) \]
であることを示せ.ただし,$A^\mathrm{T}$は$A$の行と列を入れ替えた行列要素をもつ行列,すなわち,
\[ A^\mathrm{T}=\left( \begin{array}{cc}
a & c \\
b & d
\end{array} \right) \]
である.また,$E$は単位行列である.
(2)原点のまわりの回転移動および$x$軸に関する対称移動の$1$次変換を,それぞれ,$f$および$g$とする.これらの$1$次変換を表す行列は,それぞれ,上の条件$(*)$を満たすことを確かめよ.
(3)$(2)$で考えた$1$次変換$f$および$g$を表す行列をそれぞれ$F$および$G$とし,$A=FGF^{-1}$で定義される行列$A$によって表される$1$次変換を考える.この変換によって直線$y=mx$上の任意の点がそれ自身に移されるとき,$A$を実数$m$を用いて表せ.ただし,$F^{-1}$は$F$の逆行列を表す.
(4)$(1)$で考えた点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{P}^\prime$,$\mathrm{Q}^\prime$の座標を用いて,$S=x_1y_2-y_1x_2$および$S^{\prime}={x_1}^\prime {y_2}^\prime-{y_1}^\prime {x_2}^\prime$を定義する.$\mathrm{P}$,$\mathrm{Q}$から$\mathrm{P}^\prime$,$\mathrm{Q}^\prime$への変換を表す行列が$(3)$で求めた$A$で与えられるとき,$S$と$S^\prime$の関係式を求めよ.
和歌山県立医科大学 公立 和歌山県立医科大学 2013年 第3問
隣り合う辺の長さが$a,\ b$の長方形がある.その各辺の中点を順に結んで四角形をつくる.さらにその四角形の各辺の中点を順に結んで四角形をつくる.このような操作を無限に続ける.

(1)最初の長方形も含めたこれらの四角形の周の長さの総和$S$を求めよ.
(2)関係$a+b=1$を満たしながら$a,\ b$が動くときの$S$の最小値を求めよ.
横浜市立大学 公立 横浜市立大学 2013年 第3問
座標平面上において,原点を中心とする半径$1$の円に,放物線$\displaystyle C:y=-\frac{p}{2}x^2+q (p>0,\ q>0)$が異なる$2$点で接しているとする.以下の問いに答えよ.

(1)$p,\ q$の満たす関係式および$p,\ q$の取りうる範囲を求めよ.
(2)$x$軸と$C$で囲まれた図形(ただし,$y \geqq 0$)の面積$S$を$p$を用いて表せ.
(3)$(1)$の条件の下で$p$が動くとき,$S$の最小値を求めよ.
福岡女子大学 公立 福岡女子大学 2013年 第2問
$m>0$,$n>0$とする.座標平面の$x$軸上に原点$\mathrm{O}$をはさんで左側に点$\mathrm{B}$,右側に点$\mathrm{C}$があり,線分$\mathrm{BC}$の長さを$c$とする.ただし,点$\mathrm{B}$と点$\mathrm{C}$は共に点$\mathrm{O}$と異なるものとする.以下の問に答えなさい.

(1)原点$\mathrm{O}$が線分$\mathrm{BC}$を$m:n$に内分するとき,$\mathrm{B}$,$\mathrm{C}$の$x$座標を$m,\ n,\ c$を用いて表しなさい.
(2)座標平面上の任意の点$\mathrm{A}(a,\ b)$は,次の関係式を満たすことを示しなさい.
\[ \frac{n}{m+n} \mathrm{AB}^2+\frac{m}{m+n} \mathrm{AC}^2=\mathrm{AO}^2+\frac{n}{m} \mathrm{BO}^2 \]
尾道市立大学 公立 尾道市立大学 2013年 第3問
$f(x)$を変数$x$の$2$次関数,$F(x)$を$f(x)$の原始関数とする(つまり$F^\prime(x)=f(x)$である).また$f(x)$と$F(x)$は次の関係を満たすとする.
\[ 3xF(x)-f(x)^2=x^3-7x^2-12x-9 \]
このとき,次の問いに答えなさい.

(1)$f(x)$を求めなさい.
(2)定積分$\displaystyle \int_a^{a+1} f(x) \, dx$の値が最小となる実数$a$と,そのときの定積分の値を求めなさい.
埼玉大学 国立 埼玉大学 2012年 第4問
下記の設問に答えなさい.

(1)$a$を定数とする.次の関数$f(x)$の導関数$f^{\ \prime}(x)$を求めなさい.
\[ f(x) = \int_a^x (t^2+a^2t)\, dt + \int_0^a (t^2+ax)\, dt \]
(2)次の関係式をみたす定数$a$および関数$g(x)$を求めなさい.
\[ \int_a^x (g(t)+tg(a))\, dt = x^2-2x-3 \]
信州大学 国立 信州大学 2012年 第5問
行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$は次の条件をみたすものとする.
\begin{eqnarray}
a+d=1,\ & & A^2-A-2E=O \nonumber \\
& & (\text{ただし,}E \text{は単位行列で,}O \text{は零行列である.}) \nonumber
\end{eqnarray}
このとき,次の問いに答えよ.

(1)次の関係をみたす実数$x,\ y$は$x=y=0$に限ることを示せ.
\[ xA+yE=O \]
(2)自然数$n$に対し,$A^n$はある実数$x_n,\ y_n$を用いて,$A^n=x_n A+y_n E$の形で表せることを示し,数列$\{x_n-y_n\},\ \{2x_n+y_n\}$の一般項を求めよ.
(3)自然数$n$に対し,$A^n=\left( \begin{array}{cc}
p_n & q_n \\
r_n & s_n
\end{array} \right)$とおく.$p_n+s_n$を求めよ.
信州大学 国立 信州大学 2012年 第4問
$A=\left( \begin{array}{rr}
-2 & 6 \\
0 & 3
\end{array} \right)$,$P=\left( \begin{array}{cc}
1 & \displaystyle \frac{6}{5} \\
0 & 1
\end{array} \right)$とする.

(1)すべての自然数$n$に対して$P^{-1}A^nP=\left( \begin{array}{cc}
(-2)^n & 0 \\
0 & 3^n
\end{array} \right)$が成り立つことを示せ.
(2)数列$\{a_n\}$を関係式$a_1=1,\ a_{n+1}=-2a_n+6 \cdot 3^{n-1} \ (n=1,\ 2,\ 3,\ \cdots)$で定める.このとき,すべての自然数$n$に対して$A^n \left( \begin{array}{c}
a_1 \\
1
\end{array} \right) = \left( \begin{array}{c}
a_{n+1} \\
3^n
\end{array} \right)$が成り立つことを示せ.
(3)数列$\{a_n\}$の一般項を求めよ.
スポンサーリンク

「関係」とは・・・

 まだこのタグの説明は執筆されていません。