タグ「関係」の検索結果

13ページ目:全230問中121問~130問を表示)
東京慈恵会医科大学 私立 東京慈恵会医科大学 2013年 第4問
$a,\ d$は$ad \neq 0$をみたす実数とする.$\mathrm{O}$を原点とする座標平面上において,行列$A=\left( \begin{array}{cc}
a & -1 \\
0 & d
\end{array} \right)$の表す$1$次変換(移動)を$f$とし,以下の$2$つの条件をみたす直線$\ell$がただ$1$つ存在するときを考える.

$(ⅰ)$ $\ell$は$\mathrm{O}$を通る.
$(ⅱ)$ $f$によって,$\ell$上の点はすべて$\ell$と垂直に交わるある直線$m$上に移される.

このとき,次の問いに答えよ.

(1)$a$と$d$の関係式を求めよ.
(2)$d>0$とする.$\ell$上に$\mathrm{O}$からの距離が$1$で$x$座標が正となる点$\mathrm{P}$をとり,$\mathrm{P}$の$f$による像を$\mathrm{Q}$とする.線分$\mathrm{OQ}$の長さを求めよ.また,直線$\mathrm{PQ}$と$y$軸が交わる点を$\mathrm{R}$とするとき,線分$\mathrm{OR}$の長さが最小となるように$a$と$d$の値を定めよ.
東京薬科大学 私立 東京薬科大学 2013年 第3問
$k$を実数の定数とする.$x$の方程式
\[ (\log_2x)^2-\log_2x^5+k=0 \cdots\cdots (*) \]
がある.

(1)$t=\log_2x$とおくとき,$(*)$を$t$の式で表すと,
\[ [ホ]t^2+[$*$マ]t+k=0 \]
となる.
(2)$k=4$のとき$(*)$の解は$x=[ミ],\ [ムメ]$である.
(3)$(*)$が二つの異なる実数解をもつための$k$の範囲は,$\displaystyle k<\frac{[モヤ]}{[ユ]}$である.
(4)$(3)$の下で,$(*)$の二つの解$\alpha,\ \beta (\alpha<\beta)$が$\beta=4 \alpha$という関係にあるなら,$\alpha=[ヨ] \sqrt{[ラ]}$となる.
東京薬科大学 私立 東京薬科大学 2013年 第5問
$a$は実数の定数で,$0<a \leqq 1$とする.$2$次関数$f(x)=x^2-ax+b$が
\[ \int_0^1 f(x) \, dx=0 \]
を満たすとき,次の各問に答えよ.

(1)$a$と$b$の関係式を求めると,$\displaystyle b=\frac{[$*$け]}{[こ]}a+\frac{[$*$さ]}{[し]}$となる.
(2)実数$k$が$\displaystyle \int_1^2 f(x) \, dx=k \int_{-1}^0 f(x) \, dx$を満たすとき,$k$の最小値は$[$*$す]$である.$k$が最小であるとき,$y=f(x)$の接線で傾きが$1$のものは$\displaystyle y=x+\frac{[$*$せ]}{[そ]}$である.
(3)$f(x)$の$0 \leqq x \leqq 1$における最大値と最小値を$a$の式で表したものをそれぞれ$M(a)$,$m(a)$と記すと,
\[ M(a)=\frac{[$*$た]}{[ち]} a+\frac{[$*$つ]}{[て]},\quad m(a)=\frac{[$*$と]}{[な]} a^2+\frac{[$*$に]}{[ぬ]}a+\frac{[$*$ね]}{[の]} \]
となる.
(4)最大値と最小値の差$M(a)-m(a)$の最小値は$\displaystyle \frac{[は]}{[ひ]}$である.
京都薬科大学 私立 京都薬科大学 2013年 第3問
濃度$a \, \%$の食塩水$300 \, \mathrm{g}$が入っている容器$\mathrm{A}$と,濃度$b \, \%$の食塩水$400 \, \mathrm{g}$が入っている容器$\mathrm{B}$がある.$\mathrm{A}$より$100 \, \mathrm{g}$の食塩水をとってそれを$\mathrm{B}$に移し,よくかき混ぜた後に同量を$\mathrm{A}$に戻すとする.この操作を$n$回繰り返したときの$\mathrm{A}$,$\mathrm{B}$の食塩水の濃度を求めたい.次の$[ ]$にあてはまる数または式を記入せよ.

(1)容器$\mathrm{A}$と容器$\mathrm{B}$に,最初にあった食塩の量の和は$[$*$] \mathrm{g}$である.
(2)$n (\geqq 1)$回の操作の後,容器$\mathrm{A}$の濃度が$x_n \, \%$,容器$\mathrm{B}$の濃度が$y_n \, \%$になっていたとする.$y_n$を$x_{n-1}$と$y_{n-1}$を用いて表すと,
\[ y_n=[ ] x_{n-1}+[ ] y_{n-1} \]
となる.また,$x_n$を$x_{n-1}$と$y_{n-1}$を用いて表すと,
\[ x_n=[ ] x_{n-1}+[ ] y_{n-1} \]
となる.
(3)食塩の量の和は一定であることに注意すると,
\[ [$* *$] x_n+[$***$] y_n=[$**$] x_{n-1}+[$***$] y_{n-1}=\cdots =[$*$] \]
(4)$(3)$で与えられた関係式を使って,数列$\{x_n\}$の漸化式をつくると,
\[ x_n=[ ] x_{n-1}+[ ] \]
となる.この漸化式を解くことによって,$x_n$を$a$と$b$および$n$を用いて表すと,
\[ x_n=[ ] \]
また,$y_n$を$a$と$b$および$n$を用いて表すと,
\[ y_n=[ ] \]
となる.
大阪薬科大学 私立 大阪薬科大学 2013年 第1問
次の問いに答えなさい.

(1)$2$次方程式$x^2+x+p=0$の$2$解$\alpha,\ \beta$に対して$\alpha^2-\beta^2=3$となるとき,$p=[ ]$である.
(2)$xy$座標平面上で,$x$座標と$y$座標がいずれも整数である点を格子点という.$x \geqq 0$,$y \geqq 0$,$x+2y \leqq 100$を同時に満たす格子点の個数は$[ ]$である.
(3)関数$f(x)=a(\log_3 x)^2+\log_9 bx$が,$\displaystyle x=\frac{1}{3}$で最小値$\displaystyle \frac{1}{4}$をとるとき,$(a,\ b)=[ ]$である.
(4)関数$\displaystyle y=2 \sin \left( 2x+\frac{\pi}{2} \right)$のグラフを描きなさい.
(5)表と裏が等確率で出るコインを$n$回投げ,表が出る回数が$0$回ならば$0$点,$1$回ならば$x$点,$2$回以上ならば$y$点とするゲームを考え,その点数の期待値を$E_n$とする.$n \geqq 2$の$n$に対して,不等式$E_n \geqq y$が$n$によらずに成り立つとき,$x$と$y$の間の関係を調べなさい.ただし,$x$と$y$は正とする.
大阪工業大学 私立 大阪工業大学 2013年 第2問
$\triangle \mathrm{OAB}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とし,$|\overrightarrow{a}|=\sqrt{3}$,$\displaystyle |\overrightarrow{b}|=\frac{2}{\sqrt{3}}$,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{3}$とする.さらに,辺$\mathrm{OA}$の中点を$\mathrm{M}$,辺$\mathrm{OB}$の中点を$\mathrm{N}$とし,点$\mathrm{M}$を通り辺$\mathrm{OA}$に垂直な直線と点$\mathrm{N}$を通り辺$\mathrm{OB}$に垂直な直線との交点を$\mathrm{P}$とする.このとき,次の空所を埋めよ.

(1)$\overrightarrow{a} \cdot \overrightarrow{b}=[ア]$である.
(2)$x,\ y$を実数とし,$\overrightarrow{\mathrm{OP}}=x \overrightarrow{a}+y \overrightarrow{b}$とおくと,$\overrightarrow{\mathrm{MP}}=(x-[イ]) \overrightarrow{a}+y \overrightarrow{b}$と表されるので,$\overrightarrow{\mathrm{MP}} \perp \overrightarrow{a}$より$x,\ y$の関係式は$3x+y=[ウ]$である.
また,$\overrightarrow{\mathrm{NP}} \perp \overrightarrow{b}$より,$x,\ y$の関係式は$[エ]=2$である.したがって,$x=[オ]$,$y=[カ]$である.
大阪工業大学 私立 大阪工業大学 2013年 第2問
$\triangle \mathrm{OAB}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とし,$|\overrightarrow{a}|=\sqrt{3}$,$\displaystyle |\overrightarrow{b}|=\frac{2}{\sqrt{3}}$,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{3}$とする.さらに,辺$\mathrm{OA}$の中点を$\mathrm{M}$,辺$\mathrm{OB}$の中点を$\mathrm{N}$とし,点$\mathrm{M}$を通り辺$\mathrm{OA}$に垂直な直線と点$\mathrm{N}$を通り辺$\mathrm{OB}$に垂直な直線との交点を$\mathrm{P}$とする.このとき,次の空所を埋めよ.

(1)$\overrightarrow{a} \cdot \overrightarrow{b}=[ア]$である.
(2)$x,\ y$を実数とし,$\overrightarrow{\mathrm{OP}}=x \overrightarrow{a}+y \overrightarrow{b}$とおくと,$\overrightarrow{\mathrm{MP}}=(x-[イ]) \overrightarrow{a}+y \overrightarrow{b}$と表されるので,$\overrightarrow{\mathrm{MP}} \perp \overrightarrow{a}$より$x,\ y$の関係式は$3x+y=[ウ]$である.
また,$\overrightarrow{\mathrm{NP}} \perp \overrightarrow{b}$より,$x,\ y$の関係式は$[エ]=2$である.したがって,$x=[オ]$,$y=[カ]$である.
東京医科大学 私立 東京医科大学 2013年 第1問
次の$[ ]$を埋めよ.

(1)数列$\{a_n\}$が関係式
\[ a_1=1,\quad a_{n+1}=\frac{(n+1)a_n}{(3n+1)a_n+n} \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定められているとき,$\displaystyle a_{200}=\frac{[ア]}{[イウエ]}$である.
(2)$\displaystyle 0<\theta<\frac{\pi}{2}$かつ$\displaystyle \cos \theta=\frac{1}{8}$のとき,$\displaystyle \sin \frac{3 \theta}{2}=\frac{[オ] \sqrt{[カ]}}{[キク]}$である.
日本福祉大学 私立 日本福祉大学 2013年 第1問
毎秒$60 \, \mathrm{m}$の速さで真上に打ち上げられた物体の$x$秒後の高さを$y \, \mathrm{m}$とすると,
\[ y=-5x^2+60x \qquad (0 \leqq x \leqq 12) \]
の関係が成り立つ.このとき,以下の問いに答えよ.

(1)この物体が達する最高地点の高さを求めよ.
(2)物体の高さが$100 \, \mathrm{m}$以下である時間の範囲を求めよ.
首都大学東京 公立 首都大学東京 2013年 第1問
$1$から$10$までの番号が$1$つずつ重複せずに書かれた$10$枚のカードがあり,左から小さい番号の順に横$1$列に並べてある.この中から,無作為に$2$枚のカードを選び,その場所を入れかえる操作を考える.$n$を正の整数として,この操作を$n$回行ったとき,左端にあるカードに書かれている番号が$1$である確率を$p_n$とする.以下の問いに答えなさい.

(1)$p_1$を求めなさい.
(2)$n$回目の操作のあと,$1$が書かれたカードが左端になく,$(n+1)$回目の操作のあとに$1$が書かれたカードが左端にある確率を$q_n$とするとき,$q_n$を$p_n$を用いて表しなさい.
(3)$p_{n+1}$と$p_n$の間に成り立つ関係式を求めなさい.
(4)$p_n$を$n$を用いて表しなさい.
スポンサーリンク

「関係」とは・・・

 まだこのタグの説明は執筆されていません。