タグ「関係」の検索結果

12ページ目:全230問中111問~120問を表示)
福井大学 国立 福井大学 2013年 第3問
数列$\{a_n\}$が次の関係式を満たしている.
\[ a_1=-1,\quad 5a_{n+1}-4a_n=1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,以下の問いに答えよ.ただし,$\log_{10}2=0.3010$として計算してよい.

(1)数列$\{a_n\}$の一般項を求めよ.
(2)$\displaystyle S_n=\sum_{k=1}^n a_k$とおくとき,$S_n$を$n$の式で表せ.
(3)$n \geqq 9$のとき,$S_n>0$となることを示せ.
福井大学 国立 福井大学 2013年 第2問
数列$\{a_n\}$が次の関係式を満たしている.
\[ a_1=-1,\quad 5a_{n+1}-4a_n=1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,以下の問いに答えよ.ただし,必要であれば$\log_{10}2=0.3010$として計算してよい.

(1)数列$\{a_n\}$の一般項を求めよ.
(2)$\displaystyle S_n=\sum_{k=1}^n a_k$とおくとき,$S_n$を$n$の式で表せ.
(3)$S_n>0$となる最小の$n$を求めよ.
福井大学 国立 福井大学 2013年 第4問
数列$\{r_n\}$が次の関係式を満たしている.
\[ r_1=0,\quad r_{n+1}=\frac{r_n+2}{2r_n+1} \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,以下の問いに答えよ.

(1)$\displaystyle r_{n+1}-\alpha=\beta \frac{r_n-\alpha}{2r_n+1} \ (n=1,\ 2,\ 3,\ \cdots)$を満たす定数$\alpha,\ \beta$をすべて求めよ.

(2)$\displaystyle \frac{r_{n+1}-p}{r_{n+1}-q}=k \frac{r_n-p}{r_n-q} \ (n=1,\ 2,\ 3,\ \cdots)$を満たす定数$p,\ q,\ k$の組$(p,\ q,\ k)$を$1$つ求めよ.ただし,$p \neq q$とする.

(3)数列$\{r_n\}$の一般項を求めよ.
(4)$\displaystyle \lim_{n \to \infty}r_n$を求めよ.
鳴門教育大学 国立 鳴門教育大学 2013年 第2問
実数の変数$x,\ y$の間に$x^2+y^2=18$の関係があるとき,関数$(x+y)^2-6(x+y)+12$の最大値,最小値とそのときの$x,\ y$の値を求めよ.
鳥取大学 国立 鳥取大学 2013年 第4問
実数$t$の関数$\alpha(t),\ \beta(t)$を$\displaystyle \alpha(t)=\frac{e^t+e^{-t}}{2}$,$\displaystyle \beta(t)=\frac{e^t-e^{-t}}{2}$で定める.実数の定数$p$に対して点$\mathrm{P}(x,\ y)$の$x$座標および$y$座標を,複素数
\[ z=\frac{ip \alpha(t)+\beta(t)}{ip \beta(t)+\alpha(t)} \]
の実部および虚部でそれぞれ与える.ただし$i$は虚数単位とする.

(1)$\{\alpha(t)\}^2-\{\beta(t)\}^2=1$となることを示し,$x,\ y$を$t$の関数として表せ.
(2)点$\mathrm{P}$の$x$座標の$t \to \infty$および$t \to -\infty$のときの極限値をそれぞれ求めよ.
(3)$p \neq 0$のとき,点$\mathrm{P}$の描く曲線を$x$と$y$の関係式で表せ.
鳥取大学 国立 鳥取大学 2013年 第3問
$\displaystyle I=\int e^{-x}\sin x \, dx,\ J=\int e^{-x}\cos x \, dx$とするとき,次の問いに答えよ.

(1)次の関係式が成り立つことを証明せよ.
\[ I=J-e^{-x}\sin x,\quad J=-I-e^{-x}\cos x \]
(2)$I,\ J$を求めよ.
(3)曲線$y=e^{-x}\sin x \ (x \geqq 0)$と$x$軸とで囲まれた図形で$x$軸の下側にある部分の面積を,$y$軸に近い方から順に$S_1,\ S_2,\ S_3,\ \cdots$とするとき,無限級数$\displaystyle \sum_{n=1}^\infty S_n$を求めよ.
鳥取大学 国立 鳥取大学 2013年 第4問
自然数の数列$\{a_n\}$の隣り合う$2$項に次の関係式が成り立つ.
\[ \frac{a_{n+1}}{{a_n}^2}=3^n \quad (n=1,\ 2,\ \cdots) \]
また,$a_1=1$である.このとき,次の問いに答えよ.

(1)$b_n=\log_3 a_n$とおくとき,$b_n$を$n$の式で表せ.
(2)$a_n \geqq 10^{100}$となる最小の$n$を求めよ.ただし,$\log_{10}3=0.4771$とする.
鹿児島大学 国立 鹿児島大学 2013年 第1問
次の各問いに答えよ.

(1)四角形$\mathrm{ABCD}$において,線分$\mathrm{AC}$と線分$\mathrm{BD}$の交点を$\mathrm{P}$とし,$\angle \mathrm{DAC}=\angle \mathrm{CBD}$,$\mathrm{AC}=8$,$\mathrm{AP}=2$,$\mathrm{PD}=4$とする.このとき$\mathrm{BD}$の長さを求めよ.
(2)平面上で$2$つの円を考える.共通接線がちょうど$3$本引けるような$2$つの円の位置関係の例を図示せよ.また,$3$本の共通接線も描け.
(3)$3$個のさいころを同時に投げるとき,$3$個の目の積が$3$の倍数である確率を求めよ.
(4)$a,\ b$を実数とする.命題「$ab=0$ならば,$a=0$かつ$b=0$」の逆と対偶を書き,それぞれの真偽を答えよ.
鹿児島大学 国立 鹿児島大学 2013年 第1問
次の各問いに答えよ.

(1)四角形$\mathrm{ABCD}$において,線分$\mathrm{AC}$と線分$\mathrm{BD}$の交点を$\mathrm{P}$とし,$\angle \mathrm{DAC}=\angle \mathrm{CBD}$,$\mathrm{AC}=8$,$\mathrm{AP}=2$,$\mathrm{PD}=4$とする.このとき$\mathrm{BD}$の長さを求めよ.
(2)平面上で$2$つの円を考える.共通接線がちょうど$3$本引けるような$2$つの円の位置関係の例を図示せよ.また,$3$本の共通接線も描け.
(3)$3$個のさいころを同時に投げるとき,$3$個の目の積が$3$の倍数である確率を求めよ.
(4)$a,\ b$を実数とする.命題「$ab=0$ならば,$a=0$かつ$b=0$」の逆と対偶を書き,それぞれの真偽を答えよ.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2013年 第6問
$x$は関係式$\displaystyle \frac{1}{x}=\frac{x}{y}=1+\frac{y}{x}$を満たす正の実数とする.このとき,次の問いに答えよ.

(1)$x,\ y$を求めよ.
(2)$t=2x+y$とするとき,$t^5$の値を求めよ.
スポンサーリンク

「関係」とは・・・

 まだこのタグの説明は執筆されていません。