タグ「長方形」の検索結果

4ページ目:全84問中31問~40問を表示)
埼玉大学 国立 埼玉大学 2013年 第3問
辺の長さが$\mathrm{AB}=1$,$\mathrm{BC}=k \ (0<k<1)$の長方形$\mathrm{ABCD}$を考える.辺$\mathrm{CD}$の中点を$\mathrm{M}$とし,線分$\mathrm{AM}$で三角形$\mathrm{ADM}$を折り返したとき頂点$\mathrm{D}$が重なる点を$\mathrm{E}$とする.ただし,点$\mathrm{E}$は長方形の外にはみ出る場合もある.このとき下記の設問に答えよ.

(1)$\angle \mathrm{AMD}=\alpha$とするとき,$\sin \alpha$および$\cos \alpha$をそれぞれ$k$を用いて表せ.
(2)点$\mathrm{E}$を通り,辺$\mathrm{CD}$に垂直な直線と辺$\mathrm{CD}$の交点を$\mathrm{F}$とする.このとき辺$\mathrm{CF}$の長さを$k$を用いて表せ.
(3)点$\mathrm{E}$を通り,辺$\mathrm{AM}$に垂直な直線と辺$\mathrm{AM}$の交点を$\mathrm{G}$とする.三角形$\mathrm{BCE}$の面積が三角形$\mathrm{AEG}$の面積のちょうど2倍になるときの$k$の値を求めよ.
信州大学 国立 信州大学 2013年 第1問
次の問いに答えよ.

(1)不等式$\log_3(x-2)+2 \log_9(x-4)<1$を解け.
(2)$\mathrm{O}$を原点とする座標空間の座標軸上に,$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ \sqrt{6},\ 0)$,$\mathrm{C}(0,\ 0,\ 1)$がある.線分$\mathrm{OA}$,$\mathrm{OC}$,$\mathrm{BC}$,$\mathrm{BA}$を$t:1-t$に内分する点を,それぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$とする.この$4$点により定まる長方形$\mathrm{PQRS}$の面積$M(t)$が最大となるとき,ベクトル$\overrightarrow{\mathrm{PR}}$,$\overrightarrow{\mathrm{QS}}$のなす角$\theta \ (0<\theta<\pi)$を求めよ.
(3)$3$個のサイコロを同時に投げるとき,出る目の積が$10$の倍数である確率を求めよ.
神戸大学 国立 神戸大学 2013年 第2問
$p,\ r$を$-r<p<r$をみたす実数とする.$4$点$\mathrm{P}(p,\ p^2)$,$\mathrm{Q}(r,\ p^2)$,$\mathrm{R}(r,\ r^2)$,$\mathrm{S}(p,\ r^2)$に対し,線分$\mathrm{PR}$の長さは$1$であるとする.このとき,長方形$\mathrm{PQRS}$の面積の最大値と,そのときの$\mathrm{P},\ \mathrm{R}$の$x$座標をそれぞれ求めよ.
静岡大学 国立 静岡大学 2013年 第1問
半径$\mathrm{OA}=\mathrm{OB}=1$,中心角$\displaystyle \angle \mathrm{AOB}=2 \theta \ \left( 0<\theta<\frac{\pi}{2} \right)$の扇形$\mathrm{OAB}$がある.長方形$\mathrm{PQRS}$は,扇形$\mathrm{OAB}$に内接し,その$2$辺が弦$\mathrm{AB}$と平行であるような長方形の中で面積が最大のものである.このとき,次の問いに答えよ.

(1)頂点$\mathrm{P}$と$\mathrm{Q}$が弧$\mathrm{AB}$上にあるとして,$\angle \mathrm{POQ}=2\alpha$とするとき,$\alpha$を$\theta$で表せ.
(2)長方形$\mathrm{PQRS}$の面積を$\theta$の三角比を用いて表せ.
(3)長方形$\mathrm{PQRS}$が正方形であるときの$\theta$の値を求めよ.
千葉大学 国立 千葉大学 2013年 第5問
$a,\ b$を実数とし,$a>0$とする.放物線$\displaystyle y=\frac{x^2}{4}$上に$2$点$\displaystyle \mathrm{A} \left( a,\ \frac{a^2}{4} \right)$,$\displaystyle \mathrm{B} \left( b,\ \frac{b^2}{4} \right)$をとる.点$\mathrm{A}$における放物線の接線と法線をそれぞれ$\ell_\mathrm{A}$と$n_\mathrm{A}$,点$\mathrm{B}$における放物線の接線と法線をそれぞれ$\ell_\mathrm{B}$と$n_\mathrm{B}$とおいたとき,$\ell_\mathrm{A}$と$\ell_\mathrm{B}$が直交しているものとする.$2$つの接線$\ell_\mathrm{A},\ \ell_\mathrm{B}$の交点を$\mathrm{P}$とし,$2$つの法線$n_\mathrm{A},\ n_\mathrm{B}$の交点を$\mathrm{Q}$とする.

(1)$b$を$a$を用いて表せ.
(2)$\mathrm{P},\ \mathrm{Q}$の座標を$a$を用いて表せ.
(3)長方形$\mathrm{AQBP}$の面積が最小となるような$a$の値と,そのときの面積を求めよ.
静岡大学 国立 静岡大学 2013年 第3問
半径$\mathrm{OA}=\mathrm{OB}=1$,中心角$\displaystyle \angle \mathrm{AOB}=2 \theta \ \left( 0<\theta<\frac{\pi}{2} \right)$の扇形$\mathrm{OAB}$に内接し,その$2$辺が弦$\mathrm{AB}$と平行であるような長方形$\mathrm{PQRS}$について考える.頂点$\mathrm{P}$と$\mathrm{Q}$は弧$\mathrm{AB}$上に,残りの$2$頂点はそれぞれ辺$\mathrm{OA}$と$\mathrm{OB}$上にあるとして,$\angle \mathrm{POQ}=2\alpha$とする.このとき,次の問いに答えよ.

(1)長方形$\mathrm{PQRS}$の面積を,$\alpha$と$\theta$の三角比を用いて表せ.
(2)長方形$\mathrm{PQRS}$の面積が最大になるときの$\alpha$を$\theta$で表せ.
(3)$\displaystyle \theta=\frac{\pi}{3}$のとき,長方形$\mathrm{PQRS}$の面積の最大値を求めよ.
宇都宮大学 国立 宇都宮大学 2013年 第6問
座標平面上で原点$\mathrm{O}$を中心とする半径$1$の円の第$1$象限の部分を$C$とする.曲線$y=f(x) \ (0<x<1)$は第$4$象限にあり,かつすべての$x_1 \ (0<x_1<1)$について,点$(x_1,\ f(x_1))$における接線が$C$上の点$(x_1,\ y_1)$における$C$の接線と直交しているとする.曲線$y=f(x)$上の動点を$\mathrm{P}$とするとき,次の問いに答えよ.

(1)$f^\prime(x)$を求めよ.
(2)点$\mathrm{P}$における$y=f(x)$の接線と$y$軸との交点を$\mathrm{Q}$とするとき,線分$\mathrm{PQ}$の長さは常に$1$であることを示せ.
(3)$x$軸上と$y$軸上に$2$辺をもち,線分$\mathrm{OP}$を対角線とする長方形の面積を$S$とする.点$\mathrm{P}$が$S$を最大にする位置にあるとき,$\mathrm{P}$は$\mathrm{P}$における曲線の接線と座標軸が交わってできる$2$点の中点であることを示せ.
(4)$f(x)$を求めよ.ただし,$\displaystyle \lim_{x \to 1-0}f(x)=0$であるとする.
筑波大学 国立 筑波大学 2013年 第6問
楕円$\displaystyle C:\frac{x^2}{16}+\frac{y^2}{9}=1$の,直線$y=mx$と平行な$2$接線を$\ell_1$,$\ell_1^\prime$とし,$\ell_1$,$\ell_1^\prime$に直交する$C$の$2$接線を$\ell_2$,$\ell_2^\prime$とする.

(1)$\ell_1$,$\ell_1^\prime$の方程式を$m$を用いて表せ.
(2)$\ell_1$と$\ell_1^\prime$の距離$d_1$および$\ell_2$と$\ell_2^\prime$の距離$d_2$をそれぞれ$m$を用いて表せ.ただし,平行な$2$直線$\ell$,$\ell^\prime$の距離とは,$\ell$上の$1$点と直線$\ell^\prime$の距離である.
(3)$(d_1)^2+(d_2)^2$は$m$によらず一定であることを示せ.
(4)$\ell_1$,$\ell_1^\prime$,$\ell_2$,$\ell_2^\prime$で囲まれる長方形の面積$S$を$d_1$を用いて表せ.さらに$m$が変化するとき,$S$の最大値を求めよ.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2013年 第6問
長方形$\mathrm{ABCD}$において,$\mathrm{AB}:\mathrm{BC}=2:3$であるとき,次の問いに答えよ.

(1)辺$\mathrm{BC}$上に$\mathrm{BF}:\mathrm{FC}=2:1$となる点$\mathrm{F}$をとる.ベクトル$\overrightarrow{\mathrm{AB}}$を$\overrightarrow{a}$,ベクトル$\overrightarrow{\mathrm{BC}}$を$\overrightarrow{b}$とするとき,ベクトル$\overrightarrow{\mathrm{DF}}$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
(2)辺$\mathrm{AB}$上に$\mathrm{DF} \perp \mathrm{CE}$となる点$\mathrm{E}$をとるとき,$\mathrm{AE}:\mathrm{EB}$を求めよ.
京都産業大学 私立 京都産業大学 2013年 第3問
以下の$[ ]$にあてはまる式または数値を入れよ.

$a$を正の実数とし,$xy$平面上に放物線$C:y=ax^2$とその上の点$\mathrm{P}(p,\ ap^2)$とが与えられている.ただし,$p>0$とする.原点を$\mathrm{O}$とする.
(1)放物線$C$と$x$軸および直線$x=p$で囲まれた部分の面積を$S_1(p)$とすると,$S_1(p)=[ア]$である.
(2)放物線$C$の$\mathrm{P}$における接線$\ell_1$の方程式は$y=[イ]$である.
(3)$\mathrm{P}$を通り$\ell_1$に垂直な直線$\ell_2$の方程式は$y=[ウ]$であり,$\ell_2$と$x$軸との交点を$\mathrm{Q}$とすると,$\mathrm{Q}$の$x$座標は$[エ]$である.
(4)点$\mathrm{R}(0,\ 1)$とする.$\mathrm{OQ}$,$\mathrm{OR}$を$2$辺とする長方形の面積を$S_2(p)$とし,$f(p)=S_1(p)-S_2(p) (p>0)$とおく.関数$f(p)$が極値をもつような$a$の値の範囲は$[オ]$である.
(5)$\displaystyle a=\frac{1}{10}$のとき,$f(p)$の極値を求めて,さらに$f(p)$のグラフを描け.
スポンサーリンク

「長方形」とは・・・

 まだこのタグの説明は執筆されていません。