タグ「長さ」の検索結果

97ページ目:全1099問中961問~970問を表示)
大同大学 私立 大同大学 2011年 第2問
次の問いに答えよ.

(1)$t=\log_2 x$とおく.$x>8$のとき$t>[ ]$である.$\displaystyle \log_2 \left( \log_4 \frac{x}{8} \right)=\log_4 \left( \log_8 \frac{x}{2} \right)$のとき,
\[ \log_2 \frac{t-[ ]}{[ ]}=\log_4 \frac{t-[ ]}{[ ]} \]
であり,$\displaystyle t=\frac{[ ]+[ ] \sqrt{[ ]}}{[ ]}$である.

(2)$1$辺の長さが$4$の正三角形$\mathrm{ABC}$の辺$\mathrm{AB}$を$3:1$に内分する点を$\mathrm{D}$とし,$\displaystyle \frac{1}{4} \overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\displaystyle \frac{1}{4} \overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とおくと,$\overrightarrow{\mathrm{CD}}=[ ] \overrightarrow{b}-[ ] \overrightarrow{c}$である.さらに$\mathrm{CD}$の中点を$\mathrm{E}$とすると
\[ \overrightarrow{\mathrm{BE}}=-\frac{[ ]}{[ ]} \overrightarrow{b}+[ ] \overrightarrow{c},\quad \mathrm{BE}=\frac{\sqrt{[ ]}}{[ ]} \]
である.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2011年 第4問
関数$\displaystyle f(x)=2 \log \frac{2+\sqrt{4-x^2}}{x}-\sqrt{4-x^2}$を考える.ただし,対数は自然対数である.以下の問いに答えなさい.

(1)関数$f(x)$の定義域は$0<x \leqq a$である.$a$の値を求めなさい.
(2)曲線$y=f(x)$の概形をかきなさい.なお,$y$の増減およびグラフの凹凸を調べた過程も記載しなさい.
(3)$0<x_0<a$とし,上問$(2)$の曲線$y=f(x)$を$C$とする.$C$上の点$\mathrm{P}(x_0,\ y_0)$における$C$の接線と$y$軸との交点を$\mathrm{Q}$とする.線分$\mathrm{PQ}$の長さを求めなさい.ただし,$a$は上問$(1)$で求めた値とする.
神戸薬科大学 私立 神戸薬科大学 2011年 第3問
以下の文中の$[ ]$の中にいれるべき数または式を求めて記入せよ.

(1)平面上にサイコロがある.サイコロの$4$つの側面のいずれかの面を$\displaystyle \frac{1}{4}$の確率で底面にする操作を考える.$1$の目が出ているサイコロに対してこの操作を$n$回繰り返す.このとき,以下の問に答えよ.ただし,$1$の目の裏面は$6$の目である.

(i) この操作を$n$回行ったとき,$1$か$6$の目が出ている確率を$P_n$とする.
$P_1=[ ]$,$P_2=[ ]$,$P_3=[ ]$である.
(ii) $P_n$を$n$の式で表すと,$P_n=[ ]$である.

(2)\begin{mawarikomi}{35mm}{
(図は省略)
}
$\triangle \mathrm{OAB}$は$\mathrm{OA}=\mathrm{AB}=1$,$\angle \mathrm{OAB}={90}^\circ$となる直角二等辺三角形である.$\angle \mathrm{BOA}$の二等分線上の点$\mathrm{C}$を$\mathrm{BC} \perp \mathrm{OC}$となるようにとる.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$として,以下の問に答えよ.

(i) $\overrightarrow{\mathrm{OC}}=[ ] \overrightarrow{a}+[ ] \overrightarrow{b}$である.
(ii) $\mathrm{AC}$の長さの$2$乗を求めると,$\mathrm{AC}^2=[ ]$である.

\end{mawarikomi}
愛知学院大学 私立 愛知学院大学 2011年 第4問
三角形$\mathrm{ABC}$で$\angle \mathrm{B}={45}^\circ$,$\angle \mathrm{C}={60}^\circ$,$\mathrm{BC}=10$のとき,
\[ \sin A=\frac{\sqrt{2}+\sqrt{[ア]}}{[イ]} \]
で,$\mathrm{AB}$の長さは$[ウエ] \sqrt{[オ]}-[カ] \sqrt{[キ]}$,

$\mathrm{AC}$の長さは$[クケ] \sqrt{[コ]}-[サシ]$である.
吉備国際大学 私立 吉備国際大学 2011年 第2問
$\triangle \mathrm{ABC}$で,$\mathrm{AB}=8$,$\mathrm{BC}=7$,$\mathrm{CA}=6$とする.$\angle \mathrm{BAC}$の二等分線と$\mathrm{BC}$の交点を$\mathrm{D}$とし,$\triangle \mathrm{ABC}$の重心$\mathrm{G}$に対し,直線$\mathrm{AG}$と$\mathrm{BC}$の交点を$\mathrm{H}$とする.次の問題に答えよ.

(1)$\mathrm{BD}$の長さを求めよ.
(2)$\mathrm{DH}$の長さを求めよ.
(3)$\mathrm{AG}$の長さを求めよ.
高知工科大学 公立 高知工科大学 2011年 第2問
底面が正方形で,4個の側面がすべて合同な二等辺三角形である四角錘を考える.底面の正方形の一辺の長さを$x$,側面の二等辺三角形の等しい辺の長さを$a$とする.この四角錘の体積を$V$として,次の各問に答えよ.

(1)$V$を$a$と$x$で表せ.
(2)$x$のとりうる値の範囲を$a$を用いて表せ.
(3)$V$の最大値を$a$を用いて表せ.また,そのときの$x$の値を求めよ.
高崎経済大学 公立 高崎経済大学 2011年 第1問
以下の各問いに答えよ.

(1)次の方程式を解け.
\[ |x+3| = 2x \]
(2)$a$を素数とする.$2$次方程式$x^2 -ax+66 = 0$の$2$つの解のうち,ただ$1$つのみが素数であるとき,$a$の値を求めよ.
(3)$\triangle \mathrm{ABC}$において,$A = 60^\circ$,外接円の半径$R$が$7$のとき,$\mathrm{BC}$の長さを求めよ.
(4)$\log_{10} 2 = 0.3010,\ \log_{10} 3 = 0.4771$とする.$12^{20}$は何桁の整数か.
(5)$15$本のくじの中に当たりくじが$3$本ある.この中から$2$本のくじを同時に引くとき,少なくとも$1$本が当たる確率を求めよ.
(6)次の$3$点が同一直線上にあるように,$m,\ n$の値を定めよ.
\[ \mathrm{A}(2,\ -1,\ -2),\ \mathrm{B}(4,\ 2,\ 5),\ \mathrm{C}(m,\ -4,\ n) \]
(7)次の定積分を求めよ.
\[ \int_{-2}^2 |x-1|(x-1) \, dx \]
(8)四角形$\mathrm{ABCD}$において,$\mathrm{AB} = 5,\ \mathrm{BC} = 3,\ \mathrm{CD} = 7,\ B = 120^\circ,\ D = 60^\circ$とするとき,四角形$\mathrm{ABCD}$の面積$S$を求めよ.
高知工科大学 公立 高知工科大学 2011年 第2問
$\triangle$ABCの頂点を通らない直線$\ell$が,辺AC,辺BCのB方向への延長線,および辺ABと,それぞれ点P,Q,Rで交わり,
\[ \text{AP}:\text{PC}=\alpha:1,\quad \text{CQ}:\text{QB}=\beta:1 \]
であるとする.$\overrightarrow{\mathrm{CA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{CB}}=\overrightarrow{b}$として,次の各問に答えよ.

(1)$\overrightarrow{\mathrm{CR}}$を$\alpha,\ \beta,\ \overrightarrow{a},\ \overrightarrow{b}$で表し,等式$\displaystyle \frac{\text{AP}}{\text{PC}} \cdot \frac{\text{CQ}}{\text{QB}} \cdot \frac{\text{BR}}{\text{RA}}=1$を証明せよ.
(2)$\triangle$QRB,$\triangle$BCR,$\triangle$APRの面積比が$1:2:3$のとき,$\triangle$APRと$\triangle$CPRの面積比を求めよ.
(3)(2)のとき,直線CRと直線AQの交点をDとする.線分の長さの比$\text{AD}:\text{QD}$を求めよ.
広島市立大学 公立 広島市立大学 2011年 第3問
平面上の三角形ABCの頂点A,B,Cの位置ベクトルをそれぞれ$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$とするとき,以下の問いに答えよ.

(1)線分ABの垂直二等分線を$\ell$とする.$\ell$上の点Pの位置ベクトルを$\overrightarrow{p}$とするとき,直線$\ell$のベクトル方程式は$\displaystyle \overrightarrow{p} \cdot (\overrightarrow{b} - \overrightarrow{a})=\frac{1}{2}(|\overrightarrow{b}|^2-|\overrightarrow{a}|^2)$で与えられることを示せ.
(2)(1)の結果を用いて,三角形ABCの3つの辺の垂直二等分線が1点Dで交わることを示せ.
(3)(2)で定まる点Dの位置ベクトル$\overrightarrow{d}$が,$\displaystyle \overrightarrow{d}=\frac{4}{7}\overrightarrow{a}+\frac{4}{7}\overrightarrow{b}-\frac{1}{7}\overrightarrow{c}$を満たすものとする.

(4)辺ABの中点をMとするとき,3点C,M,Dは一直線上にあることを示し,$\text{CM}:\text{MD}$を求めよ.
(5)三角形ABCの三辺の長さの比$\text{BC}:\text{CA}:\text{AB}$を求めよ.
大阪府立大学 公立 大阪府立大学 2011年 第1問
$r$を正の定数とし,$n$を$3$以上の自然数とする.$C$が半径が$r$の円とする.円$C$に内接する正$n$角形の$1$辺の長さを$s_n$,円$C$に外接する正$n$角形の$1$辺の長さを$t_n$とする.ただし,正$n$角形が円$C$に外接するとは,円$C$が正$n$角形のすべての辺に接することである.

(1)$s_n$を$r$と$n$を用いて表せ.
(2)$\displaystyle \frac{s_n}{t_n}$を$n$を用いて表せ.
(3)$s_5=2$であるとき,円$C$に内接する正$5$角形の面積を,小数第$3$位を四捨五入して小数第$2$位まで求めよ.ただし,$\tan 36^\circ=0.727$としてよい.
スポンサーリンク

「長さ」とは・・・

 まだこのタグの説明は執筆されていません。