タグ「長さ」の検索結果

95ページ目:全1099問中941問~950問を表示)
立教大学 私立 立教大学 2011年 第2問
三角形$\mathrm{ABC}$において,各辺の長さをそれぞれ$\mathrm{AB}=x$,$\mathrm{AC}=y$,$\mathrm{BC}=z$とおき,$\angle \mathrm{BAC}=\theta$とおく.また,$x,\ y,\ z$は
\[ x+y+z=a,\quad xy=z \]
をみたすものとする.ただし,$a$は正の実数である.このとき,次の問に答えよ.

(1)$\cos \theta$を$a$と$z$の式で表せ.
(2)$x+y$と$xy$をそれぞれ$a$と$\cos \theta$の式で表せ.
(3)$\displaystyle \theta=\frac{\pi}{3}$のとき,$a$のとり得る値の最小値を求めよ.また,そのときの$x,\ y,\ z$を求めよ.
立教大学 私立 立教大学 2011年 第1問
次の空欄ア~ソに当てはまる数または式を記入せよ.

(1)$x$が$0<x<1$と$\displaystyle x^2+\frac{1}{x^2}=3$を満たすとき,$x^3$の値は$[ア]$である.
(2)不等式$\displaystyle \log_5 \left( \frac{x+1}{2} \right)+\log_5(x-4)<2$の解は$[イ]<x<[ウ]$である.
(3)$\sqrt{3} \sin \theta-\cos \theta>1 (-\pi<\theta<\pi)$を満たす$\theta$の範囲は,$[エ]<\theta<[オ]$である.
(4)$3$次方程式$x^3+3x^2-24x-a=0$が,異なる$3$つの実数解をもつような定数$a$の値の範囲は,$[カ]<a<[キ]$である.
(5)積分$\displaystyle \int_{-3}^3 |x^2-1| \, dx$の値は$[ク]$である.
(6)$2$次不等式$ax^2-4x+b<0$の解が$-3<x<5$であるとき,定数$a$は$[ケ]$であり,定数$b$は$[コ]$である.
(7)$2$つのベクトル$\overrightarrow{a}=(2,\ -1,\ 1)$と$\overrightarrow{b}=(x-2,\ -x,\ 4)$のなす角が$30^\circ$のとき,$x$の値は$[サ]$である.
(8)点$(x,\ y)$が直線$2x+3y=4$の上を動くとする.$4^x+8^y$が最小値をとるとき,$x,\ y$の値は$x=[シ]$,$y=[ス]$である.
(9)三角形$\mathrm{ABC}$の$\mathrm{A}$における角度は$45^\circ$,$\mathrm{C}$における角度は$75^\circ$,辺$\mathrm{AC}$の長さが$6$であるとき,辺$\mathrm{BC}$の長さは$[セ]$である.
\mon $0,\ 1,\ 2,\ 3$の数字から選んで$4$桁の自然数を作るとき,同じ数字を何回用いてもよいとすると,$2$の倍数でない自然数は$[ソ]$個できる.
西南学院大学 私立 西南学院大学 2011年 第3問
$1$辺の長さが$1$の正方形$\mathrm{ABCD}$が,円に内接している.小さい方の弧$\mathrm{AD}$上に点$\mathrm{P}$を,$\displaystyle \angle \mathrm{ABP}=\frac{\pi}{6}$となるようにとるとき,以下の問に答えよ.

(1)この外接円の面積は$\displaystyle \frac{[ヌ]}{[ネ]} \pi$である.
(2)線分$\mathrm{BP}$と辺$\mathrm{AD}$との交点を$\mathrm{Q}$とする.このとき,四角形$\mathrm{BCDQ}$の面積は,$\displaystyle \frac{[ノ]-\sqrt{[ハ]}}{[ヒ]}$である.
(3)三角形$\mathrm{ABP}$の面積は,$\displaystyle \frac{[フ]+\sqrt{[ヘ]}}{[ホ]}$である.
立教大学 私立 立教大学 2011年 第3問
座標平面上の点$\mathrm{A}(1,\ 1)$を中心とする円$(x-1)^2+(y-1)^2=1$上を,点$\mathrm{P}_0(2,\ 1)$から出発して一定の速度で反時計回りに動く点$\mathrm{P}$と,座標平面上の点$\mathrm{B}(-1,\ -1)$を中心とするもう$1$つの円$(x+1)^2+(y+1)^2=1$上を,点$\mathrm{Q}_0(-1,\ 0)$から出発して反時計回りに動く点$\mathrm{Q}$について考える.点$\mathrm{P}$と点$\mathrm{Q}$が各円周上を進む速度は等しいものとする.このとき,次の問に答えよ.

(1)図に示すように$\angle \mathrm{P}_0 \mathrm{AP}$ならびに$\angle \mathrm{Q}_0 \mathrm{BQ}$を$\theta$とするとき,点$\mathrm{P}$と点$\mathrm{Q}$それぞれの座標を$\theta$を用いて表せ.
(2)線分$\mathrm{PQ}$の長さの最大値と,そのときの点$\mathrm{P}$の位置$\mathrm{P}_1$と点$\mathrm{Q}$の位置$\mathrm{Q}_1$それぞれの座標を求めよ.また,線分$\mathrm{PQ}$の長さの最小値と,そのときの点$\mathrm{P}$の位置$\mathrm{P}_2$と点$\mathrm{Q}$の位置$\mathrm{Q}_2$それぞれの座標を求めよ.
(3)$(2)$で求めた$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{Q}_1$,$\mathrm{Q}_2$について,$4$点$\mathrm{P}_1$,$\mathrm{Q}_1$,$\mathrm{Q}_2$,$\mathrm{P}_2$がつくる四角形の面積を求めよ.
(図は省略)
上智大学 私立 上智大学 2011年 第2問
底面の円の半径が$3 \; \mathrm{cm}$,高さが$6 \; \mathrm{cm}$の直円錐を考える.直円錐の頂点を$\mathrm{P}$,底面の円の中心を$\mathrm{Q}$とし,線分$\mathrm{PQ}$を$2:1$に内分する点を$\mathrm{O}$とする.底面の円の円周を$C_1$,$\mathrm{O}$を通り底面と平行な平面が直円錐と交わってできる円の円周を$C_2$とする.$2$点$\mathrm{A}$,$\mathrm{B}$がそれぞれ$C_1$,$C_2$上を頂点$\mathrm{P}$から見て左回りに移動している.点$\mathrm{A}$の速さは$3 \pi \,\mathrm{cm}/$秒,点$\mathrm{B}$の速さは$\pi \,\mathrm{cm}/$秒であり,時刻$t=0$において,$3$点$\mathrm{P}$,$\mathrm{B}$,$\mathrm{A}$は一直線上にあるとする.

(1)$\mathrm{A}$の角速度は$[コ] \pi$ラジアン$/$秒であり,$\mathrm{B}$の角速度は$\displaystyle \frac{[サ]}{[シ]} \pi$ラジアン$/$秒である.ただし,$\mathrm{A}$の角速度とは,動径$\mathrm{QA}$が$1$秒間に回転する角の大きさのことであり,$\mathrm{B}$の角速度とは,動径$\mathrm{OB}$が$1$秒間に回転する角の大きさのことである.
(2)線分$\mathrm{AB}$の長さを時刻$t$の関数で表すと
\[ \sqrt{[ス]-[セ] \cos \frac{\pi}{2}t } \mathrm{cm} \]
である.
(3)$\cos \angle \mathrm{AOB}$を時刻$t$の関数で表すと
\[ \frac{[ソ]}{\sqrt{[タ]}} \cos \frac{\pi}{2} t \]
である.
(4)三角形$\mathrm{AOB}$の面積を時刻$t$の関数で表すと
\[ \sqrt{[チ]-[ツ] \cos^2 \frac{\pi}{2}t } \mathrm{cm}^2 \]
である.
(5)$3$点$\mathrm{A}$,$\mathrm{O}$,$\mathrm{B}$を含む平面を$S$とする.$\mathrm{Q}$を通り,$S$と直交する直線を$\ell$とし,$\ell$と$S$の交点を$\mathrm{H}$とする.$\displaystyle t=\frac{1}{3}$のとき,線分$\mathrm{QH}$の長さは
\[ \frac{[テ]}{[ト]} \mathrm{cm} \]
である.
上智大学 私立 上智大学 2011年 第2問
$\mathrm{O}$を原点とする座標平面上に,放物線$F:y=x^2+1$および,点$\mathrm{A}(5,\ 0)$を中心とする半径$4$の円$C$がある.$F$上に点$\mathrm{P}(t,\ t^2+1)$,$C$上に点$\mathrm{Q}(a,\ b)$をとる.

(1)$\mathrm{P}$における放物線$F$の接線と直線$\mathrm{AP}$とが直交するとき,線分$\mathrm{AP}$の長さは$[タ] \sqrt{[チ]}$である.
(2)$\mathrm{Q}$を固定し,$\mathrm{P}$のみが動くとする.$\triangle \mathrm{OPQ}$の面積は$\displaystyle t=\frac{[ツ]}{[テ]} \frac{b}{a}$で最小値をとる.その最小値を$a$で表すと
\[ \frac{1}{8} \left( [ト]a+\frac{[ナ]}{a}+[ニ] \right) \]
である.
(3)$\mathrm{P}$,$\mathrm{Q}$がともに動くとする.$\triangle \mathrm{OPQ}$の面積は$\displaystyle a=\frac{[ヌ]}{[ネ]} \sqrt{[ノ]}$で最小値
\[ \frac{[ハ]}{[ヒ]}+\frac{[フ]}{[ヘ]} \sqrt{[ホ]} \]
をとる.
日本女子大学 私立 日本女子大学 2011年 第1問
$\triangle \mathrm{ABC}$において,頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に向かい合う辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$の長さをそれぞれ$a,\ b,\ c$で表す.$a=4$,$b=5$,$c=6$のとき,次の問いに答えよ.

(1)$\sin \angle \mathrm{A}$の値を求めよ.
(2)この三角形の面積$S$を求めよ.
(3)この三角形の外接円の半径$R$を求めよ.
(4)この三角形の内接円の半径$r$を求めよ.
(5)図のように,この三角形の辺$\mathrm{AB}$と辺$\mathrm{AC}$の延長および辺$\mathrm{BC}$に接する円の半径$\ell$を求めよ.
(図は省略)
日本女子大学 私立 日本女子大学 2011年 第3問
平面上の$3$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(\cos 2\theta,\ \sin 2\theta)$,$\mathrm{C}(\cos 8\theta,\ \sin 8\theta)$を考える.

(1)$\sin \theta=t$とおくとき$\sin 3\theta$を$t$の式で表せ.
(2)線分の長さの和$\mathrm{AB}+\mathrm{BC}$を$t$の式で表せ.
(3)$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{3}$とするとき$\mathrm{AB}+\mathrm{BC}$の最大値を求めよ.
学習院大学 私立 学習院大学 2011年 第1問
次の$3$つの条件をすべて満たす$3$角形の$3$辺の長さを求めよ.

$(ⅰ)$ 最大角と最小角の差は$90^\circ$である.
$(ⅱ)$ $3$辺の長さを大きさの順に並べたものは等差数列である.
$(ⅲ)$ $3$辺の長さの和は$3$である.
日本女子大学 私立 日本女子大学 2011年 第4問
点$\mathrm{O}$を中心とし,長さ$2r$の線分$\mathrm{AB}$を直径とする円の周上を動く点$\mathrm{P}$がある.$\triangle \mathrm{ABP}$の面積を$S_1$,扇形$\mathrm{OPB}$の面積を$S_2$とするとき,次の問いに答えよ.

(1)$\displaystyle \angle \mathrm{PAB}=\theta (0<\theta<\frac{\pi}{2})$とするとき,$S_1$と$S_2$を求めよ.
(2)$\mathrm{P}$が$\mathrm{B}$に限りなく近づくとき,$\displaystyle \frac{S_1}{S_2}$の極限値を求めよ.
スポンサーリンク

「長さ」とは・・・

 まだこのタグの説明は執筆されていません。