タグ「長さ」の検索結果

78ページ目:全1099問中771問~780問を表示)
関西大学 私立 関西大学 2012年 第2問
座標空間に$3$点$\mathrm{A}(0,\ 2,\ 0)$,$\mathrm{B}(1,\ 0,\ 1)$,$\mathrm{C}(0,\ 1,\ 1)$がある.次の$[ ]$をうめよ.

$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$の内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$は$[$①$]$であり,$\angle \mathrm{BAC}=[$②$]^\circ$である.$\triangle \mathrm{ABC}$の面積は$[$③$]$であり,$\triangle \mathrm{ABC}$の重心$\mathrm{G}$の座標は$[$④$]$である.
点$\mathrm{D}$を$\mathrm{DG} \perp \mathrm{AB}$,$\mathrm{DG} \perp \mathrm{AC}$かつ$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$が四面体の頂点をなすようにとる.四面体$\mathrm{ABCD}$の体積が$1$になるとき,$\mathrm{DG}$の長さは$[$⑤$]$であり,$\mathrm{D}$の$x$座標が正となるときの$\mathrm{D}$の座標は$[$⑥$]$である.
関西大学 私立 関西大学 2012年 第3問
$A=\left( \begin{array}{cc}
a & -b \\
b & a
\end{array} \right) (b \neq 0)$が表す$1$次変換を$f$とする.点$\mathrm{P}(c,\ 0) (c>0)$を考える.次の問いに答えよ.

(1)次の$[$①$]$から$[$④$]$を数値でうめよ.
点$\mathrm{Q}(3,\ 4)$を,点$\mathrm{R}(1,\ 2)$を中心として反時計まわりに$\displaystyle \frac{\pi}{3}$だけ回転した点の座標は
\[ \left( \begin{array}{rr}
\displaystyle \cos \frac{\pi}{3} & \displaystyle -\sin \frac{\pi}{3} \\ \\
\displaystyle \sin \frac{\pi}{3} & \displaystyle \cos \frac{\pi}{3}
\end{array} \right) \left( \begin{array}{c}
3-[$①$] \\ \\
4-[$②$]
\end{array} \right)+\left( \begin{array}{c}
[$①$] \\ \\
[$②$]
\end{array} \right) \]
を計算することにより,$([$③$],\ [$④$])$である.

(2)$B=\left( \begin{array}{rr}
\displaystyle \cos \frac{\pi}{3} & \displaystyle -\sin \frac{\pi}{3} \\
\displaystyle \sin \frac{\pi}{3} & \displaystyle \cos \frac{\pi}{3}
\end{array} \right)$,$V=\left( \begin{array}{c}
c \\
0
\end{array} \right)-A \left( \begin{array}{c}
c \\
0
\end{array} \right)$,$O=\left( \begin{array}{c}
0 \\
0
\end{array} \right)$とおく.

点$\mathrm{P}$を,点$f(\mathrm{P})$を中心として反時計まわりに$\displaystyle \frac{\pi}{3}$だけ回転した点が$(f \circ f)(\mathrm{P})$と一致するという条件を$A,\ B,\ V,\ O$を用いて表すと,$([$⑤$])V=O$と表すことができる.$A$と$B$を用いて$[$⑤$]$をうめよ.
(3)$3$点$\mathrm{P}$,$f(\mathrm{P})$,$(f \circ f)(\mathrm{P})$が正三角形の$3$つの頂点をなすとき,$a,\ b$の値を求めよ.
(4)$(3)$の正三角形の$1$辺の長さが$1$になるとき,$c$の値を求めよ.
北星学園大学 私立 北星学園大学 2012年 第3問
$\angle \mathrm{A}=90^\circ$,$\angle \mathrm{B}=30^\circ$,$\mathrm{AC}=2$の$\triangle \mathrm{ABC}$がある.$\mathrm{A}$から$\mathrm{BC}$へおろした垂線の足を$\mathrm{H}$とし,$\mathrm{AH}$を直径とする円の円周と辺$\mathrm{AB}$との交点を$\mathrm{D}$とする.以下の問に答えよ.

(1)円の直径を求めよ.
(2)$\mathrm{AD}$の長さを求めよ.
岡山理科大学 私立 岡山理科大学 2012年 第3問
原点$\mathrm{O}$を中心とする半径$2$の円に,点$\mathrm{P}(4,\ 0)$から引いた$2$つの接線の接点のうち,第$1$象限にある点を$\mathrm{A}$,残りの点を$\mathrm{B}$とする.直線$\mathrm{AB}$が$x$軸と交わる点を$\mathrm{C}$とする.$\mathrm{C}$から直線$\mathrm{AP}$に引いた垂線と$\mathrm{AP}$の交点を$\mathrm{D}$とする.このとき,次の設問に答えよ.

(1)線分$\mathrm{AP}$の長さを求めよ.
(2)線分$\mathrm{CD}$の長さを求めよ.
(3)$3$点$\mathrm{P}$,$\mathrm{C}$,$\mathrm{D}$を通る円の方程式を求めよ.
青山学院大学 私立 青山学院大学 2012年 第4問
曲線$\displaystyle y=\frac{1}{x} (x>0)$を$C$とする.

(1)曲線$C$上の点$\mathrm{A}(1,\ 1)$を通り,傾き$-m (0<m<1)$の直線と曲線$C$の交点のうち,$\mathrm{A}$と異なる点を$\mathrm{B}$とする.点$\mathrm{B}$の座標,および線分$\mathrm{AB}$の長さ$l$を求めよ.
(2)直線$\mathrm{AB}$と曲線$C$によって囲まれた部分の面積$S$を求めよ.
(3)$m \to +0$のとき,$\displaystyle \frac{S}{l}$の極限値を求めよ.ただし,$\displaystyle \lim_{x \to +0}x \log x=0$であることを用いてよい.
愛知学院大学 私立 愛知学院大学 2012年 第3問
周囲の長さが$30 \; \mathrm{cm}$の長方形の面積が$50 \; \mathrm{cm}^2$以上$54 \; \mathrm{cm}^2$以下だとする.このとき,この長方形の$1$辺の長さ$x$の条件を求めなさい.
広島工業大学 私立 広島工業大学 2012年 第7問
$\triangle \mathrm{ABC}$の外接円の点$\mathrm{C}$における接線を$\ell$とする.$\ell$上に$\mathrm{C}$でない点$\mathrm{T}$を,直線$\mathrm{AC}$に関して$\mathrm{B}$と反対の側にとる.$\angle \mathrm{ACT}=60^\circ$,$\mathrm{AB}=2$,$\mathrm{BC}=3$とする.
(図は省略)

(1)辺$\mathrm{AC}$の長さと外接円の半径を求めよ.
(2)円弧$\mathrm{AC}$上に$\mathrm{CD}=1$となる点$\mathrm{D}$をとる.このとき,線分$\mathrm{AD}$の長さを求めよ.
(3)四角形$\mathrm{ABCD}$の面積を求めよ.
福岡大学 私立 福岡大学 2012年 第5問
一辺の長さが$1$の正三角形$\mathrm{OAB}$がある.辺$\mathrm{AB}$の中点を$\mathrm{M}$とする.辺$\mathrm{OA}$上に点$\mathrm{P}$をとり,線分$\mathrm{OM}$と線分$\mathrm{BP}$との交点を$\mathrm{Q}$とする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$k=|\overrightarrow{\mathrm{OP}}|$とおく.$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$k$で表すと,$\overrightarrow{\mathrm{OQ}}=[ ]$である.また,$|\overrightarrow{\mathrm{OP}}|=|\overrightarrow{\mathrm{OQ}}|$となるとき,$k$の値は$[ ]$である.
東北工業大学 私立 東北工業大学 2012年 第3問
半径$5 \sqrt{2}$の円に内接する三角形$\mathrm{ABC}$がある.$\angle \mathrm{BAC}=45^\circ$,$\angle \mathrm{ACB}=30^\circ$のとき

(1)辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$の長さは
\[ \mathrm{AB}=[][] \sqrt{2},\quad \mathrm{BC}=[][],\quad \mathrm{CA}=[][](1+\sqrt{3}) \]
である.
(2)三角形$\mathrm{ABC}$の面積は$\displaystyle \frac{[][]}{2}(1+\sqrt{3})$である.
(3)辺$\mathrm{BC}$の中点を$\mathrm{M}$とするとき,辺$\mathrm{AM}$の長さの$2$乗は$[][](2+\sqrt{3})$である.
成城大学 私立 成城大学 2012年 第3問
座標空間において,$2$点$\mathrm{A}(\sqrt{6},\ 2,\ -\sqrt{6})$,$\mathrm{B}(-\sqrt{2},\ 2 \sqrt{3},\ \sqrt{2})$がある.原点を$\mathrm{O}$とするとき,以下の問いに答えよ.

(1)$2$つのベクトル$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$の両方に垂直である単位ベクトル$\overrightarrow{p}$をすべて求めよ.
(2)平面$z=1$と直線$\mathrm{OA}$および直線$\mathrm{OB}$との交点を,それぞれ$\mathrm{A}^\prime$,$\mathrm{B}^\prime$とする.このとき線分$\mathrm{A}^\prime \mathrm{B}^\prime$の長さを求めよ.
スポンサーリンク

「長さ」とは・・・

 まだこのタグの説明は執筆されていません。