タグ「長さ」の検索結果

73ページ目:全1099問中721問~730問を表示)
愛媛大学 国立 愛媛大学 2012年 第5問
次の問いに答えよ.

(1)$33^{20}$を$90$で割ったときの余りを求めよ.
(2)正六角形$\mathrm{ABCDEF}$において,辺$\mathrm{CD}$の中点を$\mathrm{P}$とする.また,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{AE}}=\overrightarrow{e}$とおく.このとき,$\overrightarrow{\mathrm{FP}}$を$\overrightarrow{c}$,$\overrightarrow{e}$を用いて表せ.
(3)袋の中に$1$から$10$までの数字が$1$つずつ書かれた$10$個の玉が入っている.この袋から同時に$3$個の玉を取り出す.このとき,取り出された玉の$3$つの数を$3$辺の長さとする三角形が存在する確率を求めよ.
茨城大学 国立 茨城大学 2012年 第4問
点$\mathrm{O}$を座標平面の原点とする.$a,\ b$を正の実数とする.放物線$C_1:y=ax^2$と放物線$\displaystyle C_2:y=-(x-b)^2+\frac{5}{16}$は,共に,点$\mathrm{P}(x_0,\ y_0)$において直線$\ell$に接しているとする.直線$\ell$と$x$軸との交点を$\mathrm{Q}$とし,$\mathrm{R}(x_0,\ 0)$とする.次の各問に答えよ.

(1)$a,\ b$の条件を求めよ.
(2)線分の長さの比$\mathrm{OQ}:\mathrm{QR}$を求めよ.
(3)$\displaystyle a=\frac{1}{4}$とする.$x$軸と$C_1$と$x \leqq x_0$の部分の$C_2$とで囲まれる図形の面積を求めよ.
早稲田大学 私立 早稲田大学 2012年 第3問
$x$-$y$平面上に$3$点$\mathrm{O}(0,\ 0)$,$\displaystyle \mathrm{A} \left( \frac{1}{\sqrt{2}},\ 0 \right)$,$\displaystyle \mathrm{B} \left( 0,\ \frac{1}{\sqrt{2}} \right)$をとり,図のように,$\triangle \mathrm{OAB}$の各辺上または内部に,$\mathrm{DE} \para \mathrm{OB}$かつ$\angle \mathrm{DCE}$を直角とする二等辺三角形$\mathrm{CDE}$をとる.点$\mathrm{C}$,$\mathrm{E}$はそれぞれ$\mathrm{OB}$,$\mathrm{AB}$上の点とする.線分$\mathrm{CE}$の長さを$m (>0)$とおくとき,次の各問に答えよ.

(1)$m$の最大値を求めよ.
(2)$s,\ t$を正数とし,ベクトル$\overrightarrow{\mathrm{OC}}+s \overrightarrow{\mathrm{CD}}+t \overrightarrow{\mathrm{CE}}$を$[ア] \overrightarrow{\mathrm{OA}}+[イ] \overrightarrow{\mathrm{OB}}$と表すとき,空欄$[ア]$,$[イ]$をそれぞれ$s,\ t$および$m$の式で表せ.
(3)等式$\overrightarrow{\mathrm{OC}}+s \overrightarrow{\mathrm{CD}}+t \overrightarrow{\mathrm{CE}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$をみたす$s$,$t$をそれぞれ$m$の式で表せ.
(4)(3)で求めた$s,\ t$を用いて,点$\mathrm{P}(x,\ y)$を$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$によって定める.このとき,$\displaystyle \frac{y}{x}$を$\displaystyle \frac{1}{m}$の式で表せ.
(5)(4)における点$\mathrm{P}(x,\ y)$の軌跡は$x,\ y$の方程式
\[ (x+[ウ])^2+(y-[エ])^2=[オ] \]
で表される.このとき,空欄$[ウ]$,$[エ]$,$[オ]$にあてはまる数値を求めよ.
(図は省略)
早稲田大学 私立 早稲田大学 2012年 第3問
$0 \leqq \theta \leqq \pi$は$\cos(2\theta) = \cos(3\theta)$を満たす.
次の問に答えよ.

(1)$\alpha - \beta = 2 \theta,\ \alpha+\beta = 3\theta$を満たす$\alpha,\ \beta$を$\theta$を用いて表せ.
(2)$\theta$の値を求めよ.
(3)$\cos\theta$の値を求めよ.
(4)$1$辺の長さが$1$の正五角形$\mathrm{ABCDE}$の外接円の半径を$R$とする.$R^2$の値を求めよ.
早稲田大学 私立 早稲田大学 2012年 第4問
$1$辺の長さが$1$である正九角形$\mathrm{ABCDEFGHI}$の対角線$\mathrm{AE}$の長さは,
\[ [チ]+[ツ]\cos 20^\circ \]
である.ただし,$[ツ]$はできるだけ小さな自然数で答えること.
(図は省略)
法政大学 私立 法政大学 2012年 第2問
$\angle \mathrm{A}=90^{\circ}$である直角三角形$\mathrm{ABC}$において,$\mathrm{D}$は辺$\mathrm{BC}$上の点で,$\triangle \mathrm{ABD}$の$3$辺の長さの和が$10\sqrt{3}$,かつ$\sin \angle \mathrm{BAD} : \sin \angle \mathrm{ABD} : \sin \angle \mathrm{ADB}=4:5:6$を満たすとする.

(1)$\mathrm{AB}$の長さを求めよ.
(2)$\triangle \mathrm{ABD}$の面積を求めよ.
(3)$\triangle \mathrm{ACD}$の面積を求めよ.
慶應義塾大学 私立 慶應義塾大学 2012年 第1問
次の各問いに答えよ.

(1)3つの行列の積
\[ \left(
x \quad y
\right) \left( \begin{array}{cc}
2 & a \\
a & 1
\end{array}
\right)
\left(
\begin{array}{c}
x \\
y
\end{array}
\right) \]
の成分が任意の実数$x,\ y$に対し0以上となるような実数$a$の範囲を不等式で表すと[ア]となる.
(2)$\angle B$が直角の直角三角形ABCの2辺AB,\ BCの長さをそれぞれ$3,\ 1$とする.また,$0<x<1$を満たす$x$に対し線分BCを$1:x$に外分する点をDとする.いま,$\angle \text{CAD}=2 \angle\text{BAC}$が成り立っているとすると,$x=[イ]$であり,$\triangle$ACDの外接円の半径は[ウ]である.
(3)関数$f(x),\ g(x)$が
\[
\left\{
\begin{array}{l}
f(x) = xe^x + 2x \displaystyle\int_0^2|g(t)|\, dt - 1 \\
\\
g(x) = x^2 -x \displaystyle\int_0^1 f(t)\,dt
\end{array}
\right.
\]
を満たすとき,$\displaystyle\int_0^2 |g(t)|\, dt$の値は[エ]または[オ]である.求める過程も解答欄(3)に書きなさい.
慶應義塾大学 私立 慶應義塾大学 2012年 第4問
$\mathrm{ABCDE}$を$1$辺の長さが$1$の正方形$\mathrm{ABCD}$を底面とし,$4$個の正三角形を側面とする正四角錐とする.
(図は省略)

(1)$\triangle \mathrm{CDE}$の重心を$\mathrm{G}$とする.ベクトル$\overrightarrow{\mathrm{AG}}$を$\overrightarrow{\mathrm{AB}},\ \overrightarrow{\mathrm{AD}},\ \overrightarrow{\mathrm{AE}}$で表すと,$\overrightarrow{\mathrm{AG}} = [セ]$となる.
(2)$\overrightarrow{\mathrm{0}}$でないベクトル$\overrightarrow{p}$が平面$\alpha$上の任意のベクトルと垂直なとき,$\overrightarrow{p}$は平面$\alpha$と垂直であるという.$\overrightarrow{p} = a\, \overrightarrow{\mathrm{AB}} + b\, \overrightarrow{\mathrm{AD}} + c\, \overrightarrow{\mathrm{AE}}\ (a,\ b,\ c\text{は実数})$が$\triangle \mathrm{CDE}$を含む平面と垂直なとき,$a:b:c=[ソ]$である.よって,$|\overrightarrow{p}|=1$かつ$\overrightarrow{p} \cdot \overrightarrow{\mathrm{AD}} > 0$となるように$a,\ b,\ c$を定めると,$\overrightarrow{p} = [タ]$となる.
(3)正四角錐$\mathrm{ABCDE}$の$\triangle \mathrm{CDE}$に,各辺の長さが$1$の正四面体$\mathrm{CDEF}$を貼り付ける.ベクトル$\overrightarrow{\mathrm{AF}}$を$\overrightarrow{\mathrm{AB}},\ \overrightarrow{\mathrm{AD}},\ \overrightarrow{\mathrm{AE}}$で表すと,$\overrightarrow{\mathrm{AF}}=[チ]$となる.また,$\mathrm{H}$を辺$\mathrm{EC}$の中点とすると,$\overrightarrow{\mathrm{HA}} \cdot \overrightarrow{\mathrm{HF}}= [ツ]$であり,$\triangle \mathrm{AHF}$の面積は[テ]である.
明治大学 私立 明治大学 2012年 第1問
以下の$[ ]$にあてはまる値を答えよ.

(1)座標平面上の点$\mathrm{P}(x,\ y)$が媒介変数$\theta$を用いて
\[ \begin{array}{l}
x=-\sin \theta+2\cos \theta \\
y= 2\sin \theta+3\cos \theta
\end{array} \]
と表されているとする.このとき,原点を$\mathrm{O}$とすると
\[ \mathrm{OP}^2 = [ア]\sqrt{2} \sin \left( [イ]\theta + \frac{\pi}{[ウ]} \right) + [エ] \]
が成り立つ.
(2)$4$つのサイコロを投げて,出た目の積を$m$とする.

(3)$m=10$となる確率は$\displaystyle\frac{[オ]}{[カ][キ][ク]}$である.また,$m=60$となる確率は$\displaystyle\frac{[ケ]}{[コ][サ][シ]}$である.
(4)$m$が$10$と互いに素になる確率は$\displaystyle\frac{[ス]}{[セ][ソ]}$である.また,$m$が$10$の倍数となる確率は$\displaystyle\frac{[タ][チ][ツ]}{[テ][ト][ナ]}$である.\\
ただし,自然数$a$と$b$が互いに素であるとは,$a$と$b$が$1$以外の公約数を持たないことをいう.

(5)$xy$座標平面上で,原点$\mathrm{O}$を中心とする半径$1$の円$\mathrm{O}$に正三角形$\mathrm{ABC}$が内接していて,三点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$はその順に反時計回りに位置している.点$\mathrm{A}$の$x$座標と$y$座標はともに正とする.直線$\mathrm{AC}$と$y$軸は点$\mathrm{D}$で交わっていて,点$\mathrm{D}$を通り直線$\mathrm{BC}$に平行な直線は,円$\mathrm{O}$に点$\mathrm{E}$で接するという.このとき,線分$\mathrm{DE}$の長さは$[ニ]$であって,$\tan (\angle \mathrm{ODE}) = [ヌ]$となる.ゆえに,点$\mathrm{A}$の$y$座標は$[ネ]$である.
明治大学 私立 明治大学 2012年 第3問
$xy$平面上に点$\mathrm{P}(1,\ 0)$を中心とする円:$(x-1)^2+y^2=1$がある.この円周上に$4$点$\displaystyle \mathrm{A}(\frac{9}{5},\ \frac{3}{5})$,$\displaystyle \mathrm{B}(\frac{1}{13},\ \frac{5}{13})$,$\mathrm{C}(\alpha,\ \beta)$,$\mathrm{D}(\gamma,\ \delta)$がある.ただし,$\displaystyle \delta<-\frac{4}{5}$とする.$\angle \mathrm{ABC}=90^{\circ}$であり,三角形$\mathrm{ACD}$の面積は$\displaystyle \frac{63}{65}$であるとする.

(1)点$\mathrm{C}$の座標は,$\displaystyle\left( \frac{[ツ]}{[テ]},\ -\displaystyle\frac{[ト]}{[テ]} \right)$である.

(2)$\mathrm{AB}$の長さは$\displaystyle \frac{[ナニ] \sqrt{[ヌネ]}}{[ヌネ]}$であり,$\displaystyle \cos \angle \mathrm{BDC}=\frac{[ノ] \sqrt{[ハヒ]}}{[ハヒ]}$である.

(3)点$\mathrm{D}$の座標は$\displaystyle \left( \frac{[フヘ]}{[ホマ]},\ -\frac{[ミム]}{[メモ]} \right)$であり,$\displaystyle \cos \angle \mathrm{BPD}=-\frac{[ヤユヨ]}{169}$である.
スポンサーリンク

「長さ」とは・・・

 まだこのタグの説明は執筆されていません。