タグ「長さ」の検索結果

72ページ目:全1099問中711問~720問を表示)
防衛大学校 国立 防衛大学校 2012年 第4問
$\angle \mathrm{ACB}$が直角の$\triangle \mathrm{ABC}$において,$\angle \mathrm{BAC}$の二等分線と辺$\mathrm{BC}$の交点を$\mathrm{D}$とする.また,$\mathrm{AB}=20$,$\mathrm{BD}=15$とする.このとき,次の問に答えよ.

(1)$\displaystyle \frac{\mathrm{CD}}{\mathrm{AC}}$の値を求めよ.
(2)線分$\mathrm{AD}$の長さを求めよ.
(3)$\triangle \mathrm{ABD}$の内接円の半径$r$と,外接円の半径$R$を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2012年 第1問
座標平面上の点を,原点のまわりに角$\theta$だけ回転移動させる一次変換を表す$2$行$2$列の行列を$A$とする.以下の問いに答えよ.

(1)座標平面上の点$\mathrm{P}_0(a,\ b)$が$A$によって変換された点を点$\mathrm{P}_1$とする.$2$点$\mathrm{P}_0$,$\mathrm{P}_1$の間の長さを求めよ.
(2)$A^n=E$となる条件を示せ.ただし,$n$は$2$以上の整数,$0 \leqq \theta \leqq \pi$,$E$は単位行列とする.
(3)座標平面上の点$\mathrm{P}_0(a,\ b)$が$A$によって$l$回変換された点を点$\mathrm{P}_l$とする.点$\mathrm{P}_0$が$A$によって$n$回変換されると,原点の周りを$1$周して元の点$\mathrm{P}_0$に戻るとする.$n$個の点$\mathrm{P}_0$,$\mathrm{P}_1$,$\cdots$,$\mathrm{P}_{n-1}$で囲まれた$n$角形の面積$S_n$を求めよ.また,$\displaystyle \lim_{x \to 0}\frac{\sin x}{x}=1$を用いて,$\displaystyle \lim_{n \to \infty}S_n$を求めよ.
(4)座標平面上の点を,原点からの方向を変えずに距離を$k$倍する一次変換を表す$2$行$2$列の行列を$B$とする.座標平面上の点$\mathrm{Q}_{i-1}$が一次変換$AB$によって点$\mathrm{Q}_i$に移るとする.点$\mathrm{Q}_0$を$(c_0,\ d_0)$とするとき,$2$点$\mathrm{Q}_{i-1}$,$\mathrm{Q}_i$の間の長さ$m_i$を$k,\ \theta,\ c_0,\ d_0$を用いて表せ.
豊橋技術科学大学 国立 豊橋技術科学大学 2012年 第2問
$xy$平面上の点とベクトルに関する以下の問いに答えよ.

(1)図のように$x$軸の正の部分と$30^\circ$の角をなす直線上に$n$個の点($\mathrm{A}_1,\ \mathrm{A}_2,\ \cdots, \mathrm{A}_n$)を以下の規則で配置する.このときの$\mathrm{A}_n$の座標を$n$を用いて表せ.また$n \to \infty$の場合における$\mathrm{A}_n$の座標を求めよ.
\[ \text{(規則)} \quad |\overrightarrow{\mathrm{OA}_1}|=2,\quad \overrightarrow{\mathrm{A}_1 \mathrm{A}_2}=\frac{1}{2}\overrightarrow{\mathrm{OA}_1},\quad \overrightarrow{\mathrm{A}_{n-1} \mathrm{A}_n}=\frac{1}{2}\overrightarrow{\mathrm{A}_{n-2} \mathrm{A}_{n-1}} \]
(図は省略)
(2)今度は$n$個の点を第一象限内に図のように反時計回りに配置する.各線分は隣り合う線分と直角をなす.このとき$n \to \infty$の場合における$\mathrm{A}_n$の座標を求めよ.ただし,各線分の長さの関係は以下の規則に従うものとする.
\[ \text{(規則)} \quad |\overrightarrow{\mathrm{OA}_1}|=2,\quad |\overrightarrow{\mathrm{A}_1 \mathrm{A}_2}|=\frac{1}{2}|\overrightarrow{\mathrm{OA}_1}|,\quad |\overrightarrow{\mathrm{A}_{n-1} \mathrm{A}_n}|=\frac{1}{2}|\overrightarrow{\mathrm{A}_{n-2} \mathrm{A}_{n-1}}| \]
(図は省略)
山梨大学 国立 山梨大学 2012年 第1問
次の問題文の枠内にあてはまる数あるいは数式を答えよ.

(1)関数$f(x)$が$p$を周期とする周期関数であるとは,すべての$x$で等式$[ ]$が成立することである.関数$\displaystyle g(x)=\sin^2 \left( 5x+\frac{\pi}{3} \right)$の正の最小の周期は$[ ]$である.
(2)実数$x$が$-\pi<x \leqq \pi$のとき,無限級数$\displaystyle \sum_{k=1}^\infty \sin^k x$が収束する条件は,$x$の値が$[ ]$以外のときであり,収束するときの無限級数の和は$[ ]$である.
(3)$\displaystyle \int_{-10}^0 \frac{1}{(x+11)(x+12)} \, dx=[ ]$であり,$\displaystyle \int_{-10}^0 \log (x+11) \, dx=[ ]$である.
(4)楕円$9x^2+4y^2+36x-40y+100=0$の$2$つの焦点のうち,$y$座標が大きい方の座標は$[ ]$である.この楕円の長軸の長さは$[ ]$である.
(5)関数$f(x)$を$f(x)=2x^2+1$とし,区間$[0,\ 1]$を$n$等分した小区間を,$\displaystyle \left[ \frac{0}{n},\ \frac{1}{n} \right]$,$\displaystyle \left[ \frac{1}{n},\ \frac{2}{n} \right]$,$\cdots$,$\displaystyle \left[ \frac{n-1}{n},\ \frac{n}{n} \right]$とする.各小区間を底辺とする$n$個の長方形の面積の総和をとる.$k$番目の小区間$\displaystyle \left[ \frac{k-1}{n},\ \frac{k}{n} \right]$において,長方形の高さとして左端での関数$f(x)$の値を用いたとき,この小区間での長方形の面積は$[ ]$となり,それらの長方形の面積の総和を$s_n$とする.また,$k$番目の小区間$\displaystyle \left[ \frac{k-1}{n},\ \frac{k}{n} \right]$において,長方形の高さとして右端での関数$f(x)$の値を用いたときの長方形の面積の総和を$S_n$とする.このとき,$S_n-s_n$は$[ ]$となる.
愛媛大学 国立 愛媛大学 2012年 第4問
図のような$1$辺の長さを$1$とする立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$を考える. \\
線分$\mathrm{AH}$と線分$\mathrm{ED}$の交点を$\mathrm{K}$とする.さらに,辺$\mathrm{CG}$を$3:1$ \\
に内分する点を$\mathrm{L}$とし,辺$\mathrm{EF}$を$p:1-p$に内分する点を$\mathrm{M}$と \\
する.ただし,$0<p<1$である.また,$\overrightarrow{a}=\overrightarrow{\mathrm{EF}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{EH}}$, \\
$\overrightarrow{c}=\overrightarrow{\mathrm{EA}}$とおく.
\img{669_2872_2012_1}{38}

(1)$\overrightarrow{\mathrm{KL}}$および$\overrightarrow{\mathrm{KM}}$をそれぞれ$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)$\overrightarrow{\mathrm{KL}}$と$\overrightarrow{\mathrm{KM}}$が垂直になるような$p$の値を求めよ.
(3)直線$\mathrm{KL}$と面$\mathrm{EFGH}$を含む平面との交点を$\mathrm{Q}$とする.

(i) 線分$\mathrm{EQ}$の長さを求めよ.
(ii) $\triangle \mathrm{EKQ}$の面積を求めよ.
愛媛大学 国立 愛媛大学 2012年 第1問
図のような$1$辺の長さを$1$とする立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$を考える. \\
線分$\mathrm{AH}$と線分$\mathrm{ED}$の交点を$\mathrm{K}$とする.さらに,辺$\mathrm{CG}$を$3:1$ \\
に内分する点を$\mathrm{L}$とし,辺$\mathrm{EF}$を$p:1-p$に内分する点を$\mathrm{M}$と \\
する.ただし,$0<p<1$である.また,$\overrightarrow{a}=\overrightarrow{\mathrm{EF}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{EH}}$, \\
$\overrightarrow{c}=\overrightarrow{\mathrm{EA}}$とおく.
\img{669_2872_2012_1}{38}

(1)$\overrightarrow{\mathrm{KL}}$および$\overrightarrow{\mathrm{KM}}$をそれぞれ$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)$\overrightarrow{\mathrm{KL}}$と$\overrightarrow{\mathrm{KM}}$が垂直になるような$p$の値を求めよ.
(3)直線$\mathrm{KL}$と面$\mathrm{EFGH}$を含む平面との交点を$\mathrm{Q}$とする.

(i) 線分$\mathrm{EQ}$の長さを求めよ.
(ii) $\triangle \mathrm{EKQ}$の面積を求めよ.
愛媛大学 国立 愛媛大学 2012年 第1問
図のような$1$辺の長さを$1$とする立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$を考える. \\
線分$\mathrm{AH}$と線分$\mathrm{ED}$の交点を$\mathrm{K}$とする.さらに,辺$\mathrm{CG}$を$3:1$ \\
に内分する点を$\mathrm{L}$とし,辺$\mathrm{EF}$を$p:1-p$に内分する点を$\mathrm{M}$と \\
する.ただし,$0<p<1$である.また,$\overrightarrow{a}=\overrightarrow{\mathrm{EF}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{EH}}$, \\
$\overrightarrow{c}=\overrightarrow{\mathrm{EA}}$とおく.
\img{669_2872_2012_1}{38}

(1)$\overrightarrow{\mathrm{KL}}$および$\overrightarrow{\mathrm{KM}}$をそれぞれ$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)$\overrightarrow{\mathrm{KL}}$と$\overrightarrow{\mathrm{KM}}$が垂直になるような$p$の値を求めよ.
(3)直線$\mathrm{KL}$と面$\mathrm{EFGH}$を含む平面との交点を$\mathrm{Q}$とする.

(i) 線分$\mathrm{EQ}$の長さを求めよ.
(ii) $\triangle \mathrm{EKQ}$の面積を求めよ.
鳴門教育大学 国立 鳴門教育大学 2012年 第4問
半径$2$の円に内接する四角形$\mathrm{ABCD}$において,$\mathrm{BD}$がこの円の直径であるとする.$\mathrm{AD}=3$,$\mathrm{CD}=2$とするとき,次の問いに答えよ.

(1)四角形$\mathrm{ABCD}$の面積を求めよ.
(2)$\mathrm{AC}$の長さを求めよ.
(3)$\mathrm{AC}$と$\mathrm{BD}$の交点を$\mathrm{E}$とし,$\angle \mathrm{AEB}=\theta$とする.このとき,$\sin \theta$の値を求めよ.
京都教育大学 国立 京都教育大学 2012年 第1問
$1$辺の長さが$a$の正八面体について,次の問に答えよ.

(1)表面積$S$を求めよ.
(2)体積$V$を求めよ.
(3)この正八面体に内接する球の半径$r$を求めよ.
大分大学 国立 大分大学 2012年 第2問
円周上の点Aにおける円の接線上に点Aと異なる点Pをとる.点Pを通る直線が点Pから近い順に2点B,Cで円と交わっている.$\angle \text{APB}$の二等分線と線分AB,ACとの交点をそれぞれD,Eとする.$\text{PA}:\text{PB}=r:1-r$とおき,$\text{BD}=s,\ \text{CE}=t$とおく.ただし,$0<r<1$とする.

(1)線分ADの長さを$r$と$s$で表しなさい.
(2)$\text{PB}:\text{PC}=2:3$となるとき,$r$の値を求めなさい.
(3)(2)のとき,線分AEの長さを$t$で表しなさい.
スポンサーリンク

「長さ」とは・・・

 まだこのタグの説明は執筆されていません。