タグ「長さ」の検索結果

71ページ目:全1099問中701問~710問を表示)
徳島大学 国立 徳島大学 2012年 第1問
$\triangle \mathrm{ABC}$において,辺$\mathrm{AB}$を$4:3$に内分する点を$\mathrm{D}$,辺$\mathrm{AC}$を$3:1$に内分する点を$\mathrm{E}$とする.また,線分$\mathrm{BE}$と線分$\mathrm{CD}$の交点を$\mathrm{F}$とし,直線$\mathrm{AF}$と辺$\mathrm{BC}$の交点を$\mathrm{G}$とする.

(1)長さの比$\mathrm{BF}:\mathrm{FE}$を求めよ.
(2)長さの比$\mathrm{BG}:\mathrm{GC}$を求めよ.
(3)面積の比$\triangle \mathrm{EFC}: \triangle \mathrm{ABC}$を求めよ.
徳島大学 国立 徳島大学 2012年 第1問
$\triangle \mathrm{ABC}$において,辺$\mathrm{AB}$を$4:3$に内分する点を$\mathrm{D}$,辺$\mathrm{AC}$を$3:1$に内分する点を$\mathrm{E}$とする.また,線分$\mathrm{BE}$と線分$\mathrm{CD}$の交点を$\mathrm{F}$とし,直線$\mathrm{AF}$と辺$\mathrm{BC}$の交点を$\mathrm{G}$とする.

(1)長さの比$\mathrm{BF}:\mathrm{FE}$を求めよ.
(2)長さの比$\mathrm{BG}:\mathrm{GC}$を求めよ.
(3)面積の比$\triangle \mathrm{EFC}: \triangle \mathrm{ABC}$を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2012年 第1問
半径2の円板が$x$軸上を正の方向に滑らずに回転するとき,円板上の点Pの描く曲線$C$を考える.円板の中心の最初の位置を$(0,\ 2)$,点Pの最初の位置を$(0,\ 1)$とする.

(1)円板がその中心のまわりに回転した角を$\theta$とするとき,Pの座標は
\[ (2\theta-\sin \theta,\ 2-\cos \theta) \]
で与えられることを示せ.
(2)点P$(2\theta-\sin \theta,\ 2-\cos \theta) \ (0<\theta<2\pi)$における曲線$C$の法線と$x$軸との交点をQとする.線分PQの長さが最大となるような点Pを求めよ.ここで,Pにおいて接線に直交する直線を法線という.
(3)曲線$C$と$x$軸,2直線$x=0,\ x=4\pi$で囲まれた図形を$x$軸のまわりに回転してできる立体の体積を求めよ.
宇都宮大学 国立 宇都宮大学 2012年 第3問
1辺の長さが1の正三角形ABCと,線分BCを$1:2$に内分する点Dが与えられている.実数$x \ (0 \leqq x \leqq 1)$に対し,線分AB上の点Pと線分AC上の点Qを$\text{AP}=\text{CQ}=x$となるように定めるとき,次の問いに答えよ.

(1)線分ADの長さを求めよ.
(2)三角形DPQの面積$S$を$x$の式で表せ.
(3)(2)の$S$について,$S$の最大値と最小値を求めよ.
(4)(2)の$S$の値が$\displaystyle \frac{\sqrt{3}}{8}$となるとき,$x$の値を求めよ.
奈良教育大学 国立 奈良教育大学 2012年 第2問
三角形$\mathrm{ABC}$において,次の関係が成り立つとき,三角形$\mathrm{ABC}$は直角三角形,または,二等辺三角形であることを示せ.
\[ a \cos A=b \cos B \]
ただし,$a,\ b$はそれぞれ三角形$\mathrm{ABC}$の辺$\mathrm{BC}$,$\mathrm{AC}$の長さを表し,$A,\ B$はそれぞれ三角形$\mathrm{ABC}$の$\angle \mathrm{BAC},\ \angle \mathrm{ABC}$を表す.
小樽商科大学 国立 小樽商科大学 2012年 第3問
次の[ ]の中を適当に補いなさい.

(1)$\log_{10}(x+2)-\log_{10}\sqrt{6x+19} \geqq 0$を満たす実数$x$の範囲を求めると[ ].
(2)右記の図のような1辺の長さが1の正六面体$\mathrm{ABCD}$-$\mathrm{EFGH}$において \\
$\mathrm{AG}$の長さを求めると[ ].
\img{2_2_2012_2}{10}
(3)箱の中に,平成19年から平成23年の各年に発行された1,000円の商品券が1枚ずつ,5,000円の商品券が1枚ずつ,10,000円の商品券が1枚ずつ,計15枚の商品券が入っている.そこから1枚ずつ3枚の商品券を取り出したとき,取り出された商品券の発行年がすべて異なり,かつそれらの合計が15,000円以上になる確率は[ ]である.ただし,どの商品券も同形同質であり,一度取り出された商品券は箱に戻さないものとし,各商品券には発行年と額面が記載されているものとする.
福島大学 国立 福島大学 2012年 第2問
座標平面上の3点$\mathrm{A}(9,\ 12)$,$\mathrm{B}(0,\ 0)$,$\mathrm{C}(25,\ 0)$を頂点とする三角形$\mathrm{ABC}$および,三角形$\mathrm{ABC}$の内接円と外接円を考える.三角形$\mathrm{ABC}$の内接円は,辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$とそれぞれ点$\mathrm{D},\ \mathrm{E},\ \mathrm{F}$で接する.また,三角形$\mathrm{ABC}$の内接円の中心と点$\mathrm{A}$を通る直線は,辺$\mathrm{BC}$と点$\mathrm{G}$で交わる.このとき,以下の問いに答えなさい.

(1)3辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$の長さを求めなさい.
(2)線分$\mathrm{AE}$の長さを求めなさい.
(3)三角形$\mathrm{ABC}$の内接円の半径と中心の座標を求めなさい.
(4)点$\mathrm{G}$の座標を求めなさい.
(5)三角形$\mathrm{ABC}$の外接円の方程式を求めなさい.
山形大学 国立 山形大学 2012年 第1問
$k>0$とする.原点を$\mathrm{O}$とする座標平面において,2点$\mathrm{A},\ \mathrm{B}$は曲線$\displaystyle y=\frac{1}{k}x^2$上にあり,かつ$\triangle \mathrm{OAB}$は正三角形とする.また,$\triangle \mathrm{OAB}$の内接円を$S$とし,$\mathrm{C}$をその中心とする.このとき,次の問に答えよ.

(1)中心$\mathrm{C}$の座標を求めよ.
(2)円$S$の方程式を求めよ.
(3)$T$を中心$\mathrm{D}(3k,\ -2k)$,半径$k$の円とする.$T$上の点$\mathrm{P}$から円$S$へ2本の接線を引いて,その接点を$\mathrm{E},\ \mathrm{F}$とする.線分$\mathrm{CP}$の長さを$t$として,内積$\overrightarrow{\mathrm{CE}} \cdot \overrightarrow{\mathrm{CF}}$を$k$と$t$を用いて表せ.
(4)点$\mathrm{P}$が円$T$上を動くとき,内積$\overrightarrow{\mathrm{CE}} \cdot \overrightarrow{\mathrm{CF}}$の最大値と最小値を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2012年 第2問
$xyz$空間内に四面体$\mathrm{PABC}$がある.$\triangle \mathrm{ABC}$は$xy$平面内にある鋭角三角形とし,頂点$\mathrm{P}$の$z$座標は正とする.$\mathrm{P}$から$xy$平面に下ろした垂線を$\mathrm{PH}$とし,$\mathrm{H}$は$\triangle \mathrm{ABC}$の内部にあるとする.$\mathrm{H}$から直線$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$に下ろした垂線をそれぞれ$\mathrm{HK}_1$,$\mathrm{HK}_2$,$\mathrm{HK}_3$とする.そのとき$\mathrm{PK}_1 \perp \mathrm{AB}$,$\mathrm{PK}_2 \perp \mathrm{BC}$,$\mathrm{PK}_3 \perp \mathrm{CA}$である.$\angle \mathrm{PK}_1 \mathrm{H}=\alpha_1$,$\angle \mathrm{PK}_2 \mathrm{H}=\alpha_2$,$\angle \mathrm{PK}_3 \mathrm{H}=\alpha_3$とし,$\triangle \mathrm{PAB}$,$\triangle \mathrm{PBC}$,$\triangle \mathrm{PCA}$の面積をそれぞれ$S_1,\ S_2,\ S_3$とする.

(1)$\triangle \mathrm{HAB}$の面積を$\alpha_1,\ S_1$を用いて表せ.
(2)3つのベクトル$\overrightarrow{l_1}$,$\overrightarrow{l_2}$,$\overrightarrow{l_3}$は,大きさがそれぞれ$S_1,\ S_2,\ S_3$であり,向きがそれぞれ平面$\mathrm{PAB}$,平面$\mathrm{PBC}$,平面$\mathrm{PCA}$に垂直であるとする.ただし,$\overrightarrow{l_1}$,$\overrightarrow{l_2}$,$\overrightarrow{l_3}$の$z$成分はすべて正とする.このとき,$\overrightarrow{l_1}+\overrightarrow{l_2}+\overrightarrow{l_3}$の$z$成分は$\triangle \mathrm{ABC}$の面積に等しいことを示せ.
(3)3辺$\mathrm{AB},\ \mathrm{BC},\ \mathrm{CA}$の長さの比$\mathrm{AB}:\mathrm{BC}:\mathrm{CA}$を,$\alpha_1,\ \alpha_2,\ \alpha_3,\ S_1,\ S_2,\ S_3$を用いて表せ.
山形大学 国立 山形大学 2012年 第4問
$k>0$とする.原点を$\mathrm{O}$とする座標平面において,2点$\mathrm{A},\ \mathrm{B}$は曲線$\displaystyle y=\frac{1}{k}x^2$上にあり,かつ$\triangle \mathrm{OAB}$は正三角形とする.また,$\triangle \mathrm{OAB}$の内接円を$S$とし,$\mathrm{C}$をその中心とする.このとき,次の問に答えよ.

(1)中心$\mathrm{C}$の座標を求めよ.
(2)円$S$の方程式を求めよ.
(3)$T$を中心$\mathrm{D}(3k,\ -2k)$,半径$k$の円とする.$T$上の点$\mathrm{P}$から円$S$へ2本の接線を引いて,その接点を$\mathrm{E},\ \mathrm{F}$とする.線分$\mathrm{CP}$の長さを$t$として,内積$\overrightarrow{\mathrm{CE}} \cdot \overrightarrow{\mathrm{CF}}$を$k$と$t$を用いて表せ.
(4)点$\mathrm{P}$が円$T$上を動くとき,内積$\overrightarrow{\mathrm{CE}} \cdot \overrightarrow{\mathrm{CF}}$の最大値と最小値を求めよ.
スポンサーリンク

「長さ」とは・・・

 まだこのタグの説明は執筆されていません。