タグ「長さ」の検索結果

70ページ目:全1099問中691問~700問を表示)
大分大学 国立 大分大学 2012年 第3問
円周上の点Aにおける円の接線上に点Aと異なる点Pをとる.点Pを通る直線が点Pから近い順に2点B,Cで円と交わっている.$\angle \text{APB}$の二等分線と線分AB,ACとの交点をそれぞれD,Eとする.$\text{PA}:\text{PB}=r:1-r$とおき,$\text{BD}=s,\ \text{CE}=t$とおく.ただし,$0<r<1$とする.

(1)線分ADの長さを$r$と$s$で表しなさい.
(2)$\text{PB}:\text{PC}=2:3$となるとき,$r$の値を求めなさい.
(3)(2)のとき,線分AEの長さを$t$で表しなさい.
岐阜大学 国立 岐阜大学 2012年 第1問
四角形$\mathrm{ABCD}$において$\mathrm{AB}=\mathrm{CD}=1,\ \mathrm{BC}=\mathrm{DA}=3$であり,対角線$\mathrm{AC}$,$\mathrm{BD}$の長さをそれぞれ$x,\ y$とする.以下の問に答えよ.

(1)四角形$\mathrm{ABCD}$の面積$S$を$x$を用いて表せ.また,$S$の最大値$S_0$を求めよ.
(2)面積が$\displaystyle \frac{1}{3}S_0$である四角形$\mathrm{ABCD}$に対して$x^2,\ y^2$の値を求めよ.ただし,$x \leqq y$とし,$S_0$は(1)で求めたものとする.
(3)$\cos \angle \mathrm{ACB}$を$x$で表せ.また,$\angle \mathrm{ACB}$が最大となる$x$の値を求めよ.
岐阜大学 国立 岐阜大学 2012年 第1問
四角形$\mathrm{ABCD}$において$\mathrm{AB}=\mathrm{CD}=1,\ \mathrm{BC}=\mathrm{DA}=3$であり,対角線$\mathrm{AC}$,$\mathrm{BD}$の長さをそれぞれ$x,\ y$とする.以下の問に答えよ.

(1)四角形$\mathrm{ABCD}$の面積$S$を$x$を用いて表せ.また,$S$の最大値$S_0$を求めよ.
(2)面積が$\displaystyle \frac{1}{3}S_0$である四角形$\mathrm{ABCD}$に対して$x^2,\ y^2$の値を求めよ.ただし,$x \leqq y$とし,$S_0$は(1)で求めたものとする.
(3)$\cos \angle \mathrm{ACB}$を$x$で表せ.また,$\angle \mathrm{ACB}$が最大となる$x$の値を求めよ.
九州工業大学 国立 九州工業大学 2012年 第4問
1辺の長さが1の正三角形の頂点を時計回りにP,Q,Rとする.これらの頂点のいずれかにある動点が,次のように辺上を移動することを1回の試行とする.さいころを1回投げて,1の目が出れば反時計回りに長さ1だけ移動し,6の目が出れば移動せず,それ以外の場合は時計回りに長さ1だけ移動する.動点は最初に点Pにあり,$n$回の試行後に動点が点P,Q,Rにある確率をそれぞれ$p_n,\ q_n,\ r_n \ (n=1,\ 2,\ 3,\ \cdots)$とする.以下の問いに答えよ.

(1)$p_1,\ p_2$をそれぞれ求めよ.
(2)$q_2,\ r_2$をそれぞれ求め,さらに$p_3$を求めよ.
(3)$p_{n+1}$を$r_n$を用いて表せ.
(4)$p_{n+3}$を$p_n$を用いて表せ.
(5)$p_{3n}$を$n$を用いて表せ.
岩手大学 国立 岩手大学 2012年 第1問
座標平面上に$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{P}_1(\sqrt{3},\ 1)$,$\mathrm{P}_2(\sqrt{3},\ 0)$をとる.点$\mathrm{P}_2$から線分$\mathrm{OP}_1$に引いた垂線と線分$\mathrm{OP}_1$との交点を$\mathrm{P}_3$とする.次に,点$\mathrm{P}_3$から線分$\mathrm{OP}_2$に引いた垂線と線分$\mathrm{OP}_2$との交点を$\mathrm{P}_4$とする.この操作を繰り返すことにより,点$\mathrm{P}_n$を定める.すなわち,点$\mathrm{P}_{n-1}$から$\mathrm{OP}_{n-2}$に引いた垂線と線分$\mathrm{OP}_{n-2}$との交点を$\mathrm{P}_n$とする.このとき,以下の問いに答えよ.

(1)三つの線分$\mathrm{P}_1 \mathrm{P}_2$,$\mathrm{P}_2 \mathrm{P}_3$,$\mathrm{P}_3 \mathrm{P}_4$の長さをそれぞれ求めよ.
(2)線分$\mathrm{P}_n \mathrm{P}_{n+1}$の長さを$n$を用いて表せ.
(3)三つの三角形$\mathrm{OP}_1 \mathrm{P}_2$,$\mathrm{OP}_2 \mathrm{P}_3$,$\mathrm{OP}_3 \mathrm{P}_4$の面積をそれぞれ求めよ.
(4)三角形$\mathrm{OP}_n \mathrm{P}_{n+1}$の面積を$n$を用いて表せ.
(5)三角形$\mathrm{OP}_n \mathrm{P}_{n+1}$の面積を$a_n$とおき,
\[ S_n=a_1+a_2+\cdots +a_n \]
と定義する.$S_n$は$2\sqrt{3}$以上にならないことを証明せよ.
香川大学 国立 香川大学 2012年 第2問
$C_1$を,中心が$(1,\ 1)$,半径が1の円とする.円$C_2,\ C_3,\ C_4,\ \cdots$を次のように定める.

円$C_n$は,$x$軸,$y$軸および円$C_{n-1}$に接し,円$C_n$の半径$r_n$は,円$C_{n-1}$の半径$r_{n-1}$よりも小さいものとする.

このとき,次の問に答えよ.

(1)Oを原点とし,$n=2,\ 3,\ 4,\ \cdots$に対してP$_n$を$C_n$と$C_{n-1}$の接点とするとき,OP$_n$の長さを$r_n$で表せ.
(2)$r_n$と$r_{n-1}$の関係式を求め,数列$\{r_n\}$が等比数列であることを示せ.
(3)円$C_6$は,原点を中心とした半径$\displaystyle \frac{1}{1000}$の円の内部に含まれることを示せ.
香川大学 国立 香川大学 2012年 第5問
$a$を正の定数とし,座標平面上に異なる2点$\mathrm{A}(a,\ 0)$,$\mathrm{P}(x,\ 0)$をとる.線分の長さ$\mathrm{OP}$と$\mathrm{PA}$の比の値$\displaystyle \frac{\mathrm{OP}}{\mathrm{PA}}$について,次の問に答えよ.ただし,$\mathrm{O}$は原点を表す.

(1)$\displaystyle \frac{\mathrm{OP}}{\mathrm{PA}}$を$x,\ a$を用いて表せ.
(2)$\displaystyle \frac{\mathrm{OP}}{\mathrm{PA}}=\frac{1}{2}$のとき,$\mathrm{P}$の座標を求めよ.
(3)$\displaystyle f(x)=\frac{\mathrm{OP}}{\mathrm{PA}}$とするとき,関数$y=f(x)$のグラフの概形をかけ.
香川大学 国立 香川大学 2012年 第2問
$C_1$を,中心が$(1,\ 1)$,半径が1の円とする.円$C_2,\ C_3,\ C_4,\ \cdots$を次のように定める.

円$C_n$は,$x$軸,$y$軸および円$C_{n-1}$に接し,円$C_n$の半径$r_n$は,円$C_{n-1}$の半径$r_{n-1}$よりも小さいものとする.

このとき,次の問に答えよ.

(1)Oを原点とし,$n=2,\ 3,\ 4,\ \cdots$に対してP$_n$を$C_n$と$C_{n-1}$の接点とするとき,OP$_n$の長さを$r_n$で表せ.
(2)$r_n$と$r_{n-1}$の関係式を求め,数列$\{r_n\}$が等比数列であることを示せ.
(3)円$C_6$は,原点を中心とした半径$\displaystyle \frac{1}{1000}$の円の内部に含まれることを示せ.
香川大学 国立 香川大学 2012年 第2問
$C_1$を,中心が$(1,\ 1)$,半径が1の円とする.円$C_2,\ C_3,\ C_4,\ \cdots$を次のように定める.

円$C_n$は,$x$軸,$y$軸および円$C_{n-1}$に接し,円$C_n$の半径$r_n$は,円$C_{n-1}$の半径$r_{n-1}$よりも小さいものとする.

このとき,次の問に答えよ.

(1)Oを原点とし,$n=2,\ 3,\ 4,\ \cdots$に対してP$_n$を$C_n$と$C_{n-1}$の接点とするとき,OP$_n$の長さを$r_n$で表せ.
(2)$r_n$と$r_{n-1}$の関係式を求め,数列$\{r_n\}$が等比数列であることを示せ.
(3)円$C_6$は,原点を中心とした半径$\displaystyle \frac{1}{1000}$の円の内部に含まれることを示せ.
群馬大学 国立 群馬大学 2012年 第3問
$n$を自然数とし,縦が3,横が$2n$の長方形の盤上全体を,隣り合う2辺の長さが1と2の長方形のタイルですき間なく敷きつめるとき,その敷きつめ方の場合の数を$a_n$とする.そのうち左端に3つのタイルが接している場合の敷きつめ方の場合の数を$x_n$とし,それ以外の敷きつめ方の場合の数を$y_n$とする.このとき以下の問いに答えよ.

(1)$a_1,\ a_2$の値を求めよ.
(2)$a_n,\ x_{n+1},\ y_{n+1}$を$x_n,\ y_n$を用いて表せ.
(3)$a_{n+2}$を$a_{n+1},\ a_n$を用いて表し,さらに$a_4$の値を求めよ.
スポンサーリンク

「長さ」とは・・・

 まだこのタグの説明は執筆されていません。