タグ「長さ」の検索結果

68ページ目:全1099問中671問~680問を表示)
大阪大学 国立 大阪大学 2012年 第1問
$a>0$とする.$C_1$を曲線$\displaystyle x^2+\frac{y^2}{a^2}=1$,$C_2$を直線$y=2ax-3a$とする.このとき,以下の問いに答えよ.

(1)点Pが$C_1$上を動き,点Qが$C_2$上を動くとき,線分PQの長さの最小値を$f(a)$とする.$f(a)$を$a$を用いて表せ.
(2)極限値$\displaystyle\lim_{a \to \infty}f(a)$を求めよ.
名古屋大学 国立 名古屋大学 2012年 第1問
$xy$平面上に,点$(0,\ 1)$を通り,傾きが$k$の直線$\ell$がある.

(1)$xy$平面において,$\ell$に関して点P$(a,\ b)$と対称な点をQ$(s,\ t)$とする.このとき,$a,\ b,\ k$を用いて$s,\ t$を表せ.ただし,点P$(a,\ b)$は$\ell$上にないとする.
(2)$xy$平面において,$\ell$に関して原点O$(0,\ 0)$と対称な点をAとする.$k$が$-1 \leqq k \leqq 1$の範囲を動くとき,線分OAの長さの最大値と最小値を求めよ.
(3)$k$が$-1 \leqq k \leqq 1$の範囲を動くときの点Aの軌跡を$C$とする.$C$と直線$y=1$で囲まれた図形の面積を求めよ.
埼玉大学 国立 埼玉大学 2012年 第3問
$xy$平面上に曲線$C:y=x^2-x$と直線$\ell:y=x$がある.

(1)$\ell$上の点$\mathrm{P} \displaystyle \left( \frac{t}{\sqrt{2}},\ \frac{t}{\sqrt{2}}\right) (0 \leqq t \leqq 2\sqrt{2})$を通り,$\ell$と垂直な直線を$m$とする.$m$と$C$の共有点のうち,$x$座標が$0$以上のものを$\mathrm{Q}$とする.$\mathrm{Q}$の座標を求めよ.
(2)$0 \leqq t \leqq 2\sqrt{2}$のとき,線分$\mathrm{PQ}$の長さの最大値とそのときの$t$を求めよ.
(3)$C$と$\ell$で囲まれた部分を$\ell$を軸として$1$回転してできる立体の体積を求めよ.
埼玉大学 国立 埼玉大学 2012年 第2問
座標平面内の曲線$y=x^2$上の2点$\mathrm{P}_1(x_1,\ y_1)$と$\mathrm{P}_2(x_2,\ y_2)$を両端にもつ長さ$r>0$の線分$\mathrm{P}_1 \mathrm{P}_2$の中点を$\mathrm{C}(s,\ t)$とする.また$a=x_1-x_2,\ b=x_1+x_2$とおく.このとき下記の設問に答えなさい.

(1)$r^2$を$a$と$b$を用いて表しなさい.
(2)線分$\mathrm{P}_1 \mathrm{P}_2$の中点$\mathrm{C}$の$y$座標$t$を$b$と$r$を用いて表しなさい.
(3)$0<r<1$とする.このとき$t$は$b=0$のとき最小値$\displaystyle \frac{r^2}{4}$をとることを示しなさい.
(4)$r \geqq 1$の場合,$t$の最小値を$r$を用いて表しなさい.
東北大学 国立 東北大学 2012年 第5問
長さ$1$の線分$\mathrm{AB}$を直径とする円周$C$上に点$\mathrm{P}$をとる.ただし,点$\mathrm{P}$は点$\mathrm{A}$,$\mathrm{B}$とは一致していないとする.線分$\mathrm{AB}$上の点$\mathrm{Q}$を$\displaystyle \angle \mathrm{BPQ} = \frac{\pi}{3}$となるようにとり,線分$\mathrm{BP}$の長さを$x$とし,線分$\mathrm{PQ}$の長さを$y$とする.以下の問いに答えよ.

(1)$y$を$x$を用いて表せ.
(2)点$\mathrm{P}$が$2$点$\mathrm{A}$,$\mathrm{B}$を除いた円周$C$上を動くとき,$y$が最大となる$x$を求めよ.
信州大学 国立 信州大学 2012年 第1問
次の設問に答えよ.

(1)すべての自然数$n$に対して$\displaystyle \frac{1}{n^2+6n+8}=\frac{A}{n+2}+\frac{B}{n+4}$を満たすような定数$A,\ B$の値を求めよ.また,無限級数$\displaystyle \sum_{n=1}^\infty \frac{1}{n^2+6n+8}$の和を求めよ.
(2)面積が$\displaystyle \frac{3\sqrt{3}}{2}$の三角形$\mathrm{ABC}$において,$\mathrm{AB}=3,\ \mathrm{AC}=2$であるとき,辺$\mathrm{BC}$の長さを求めよ.
(3)座標空間において,$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 2,\ 0)$,$\mathrm{C}(0,\ 0,\ 2)$を通る平面を$\alpha$とする.$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る球面の中心$\mathrm{M}$が平面$\alpha$上にあるとき,$\mathrm{M}$の座標と球面の半径$r$を求めよ.
信州大学 国立 信州大学 2012年 第3問
下図のように,$x$軸,$y$軸,$z$軸上に辺があり,一辺の長さが3である立方体がある.点A$(0,\ 0,\ 3)$,B$(3,\ 0,\ 2)$,C$(3,\ 3,\ 1)$を通る平面で立方体を切断したときの切り口を四角形ABCDとする.このとき,次の問に答えよ.\\
\setlength\unitlength{1truecm}
(図は省略)

(1)$\overrightarrow{\mathrm{BA}}$と$\overrightarrow{\mathrm{BC}}$のなす角を$\theta$とするとき,$\cos \theta$の値を求めよ.
(2)点P$(3,\ 3,\ 3)$から四角形ABCDに下ろした垂線の足をHとする.このとき
\[ \overrightarrow{\mathrm{BH}}=s \overrightarrow{\mathrm{BA}}+t \overrightarrow{\mathrm{BC}} \]
を満たす$s,\ t$を求めよ.
(3)点Pを頂点とし,四角形ABCDを底面とする四角すいの体積を求めよ.
広島大学 国立 広島大学 2012年 第3問
図のような$3$辺の長さをもつ三角形$\mathrm{ABC}$がある.

\setlength\unitlength{1truecm}
(図は省略)

次の問いに答えよ.

(1)$45^\circ < \angle \mathrm{B} < 60^\circ$を証明せよ.
(2)$\angle \mathrm{A}=2\angle \mathrm{C}$を証明せよ.
(3)$40^\circ < \angle \mathrm{C} < 45^\circ$を証明せよ.
広島大学 国立 広島大学 2012年 第4問
$\displaystyle 0 < \theta < \frac{\pi}{2}$とする.原点Oを中心とする単位円周上の異なる3点A,B,Cが条件
\[ (\cos \theta) \overrightarrow{\mathrm{OA}} + (\sin \theta) \overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{0}} \]
を満たすとする.次の問いに答えよ.

(1)2つのベクトル$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}}$は垂直であることを証明せよ.
(2)$|\overrightarrow{\mathrm{CA}}|,\ |\overrightarrow{\mathrm{CB}}|$を$\theta$を用いて表せ.
(3)三角形ABCの周の長さ$\text{AB}+ \text{BC} + \text{CA}$を最大にする$\theta$を求めよ.
金沢大学 国立 金沢大学 2012年 第1問
半径$1$の円に内接する正$2^n$角形$(n \geqq 2)$の面積を$S_n$,周の長さを$L_n$とする.次の問いに答えよ.

(1)$\displaystyle S_n = 2^{n-1} \sin \frac{\pi}{2^{n-1}},\quad L_n=2^{n+1} \sin \frac{\pi}{2^n}$を示せ.

(2)$\displaystyle \frac{S_n}{S_{n+1}}= \cos \frac{\pi}{2^n},\quad \frac{S_n}{L_n}=\frac{1}{2} \cos \frac{\pi}{2^n}$を示せ.

(3)$\displaystyle \lim_{n \to \infty} S_n,\quad \lim_{n \to \infty} \cos \frac{\pi}{2^2}\cos \frac{\pi}{2^3} \cdots \cos \frac{\pi}{2^n}$を求めよ.

(4)$\displaystyle \lim_{n \to \infty}2^n \frac{S_2}{L_2}\frac{S_3}{L_3} \cdots \frac{S_n}{L_n}$を求めよ.
(図は省略)
スポンサーリンク

「長さ」とは・・・

 まだこのタグの説明は執筆されていません。