タグ「長さ」の検索結果

65ページ目:全1099問中641問~650問を表示)
早稲田大学 私立 早稲田大学 2013年 第3問
$1$辺の長さが$1$の正方形$\mathrm{ABCD}$において,図のように$\mathrm{AW}=\mathrm{BX}=\mathrm{CY}=\mathrm{DZ}$となる点$\mathrm{W}$,$\mathrm{X}$,$\mathrm{Y}$,$\mathrm{Z}$をとる.四角形$\mathrm{WXYZ}$に内接する円を$C_0$とし,$\triangle \mathrm{AWZ}$,$\triangle \mathrm{BXW}$,$\triangle \mathrm{CYX}$,$\triangle \mathrm{DZY}$に内接する円をそれぞれ$C_1$,$C_2$,$C_3$,$C_4$とする.$\mathrm{AW}=x$,$\mathrm{ZW}=a$とおくとき
\[ a^2=[セ]x^2+[ソ]x+1 \quad (0<x<1) \]
となる.円$C_0$,$C_1$,$C_2$,$C_3$,$C_4$の面積の総和を$S$とすると
\[ S=\frac{\pi}{4} \left( [タ]a^2+[チ]a+[ツ] \right) \]
となり,$\displaystyle a=\frac{[ト]}{[テ]}$のとき,$S$は最小値$\displaystyle \frac{\pi}{[ナ]}$をとる.
(図は省略)
立教大学 私立 立教大学 2013年 第3問
図のように,$8$本の平行な線分と,それらと垂直に交わる$8$本の平行な線分が,それぞれ長さ$1$の間隔で並んでいる.これらの線分のうち$4$本で囲まれる四角形について,次の問に答えよ.

(図は省略)


(1)一辺の長さが$6$の正方形の個数を求めよ.
(2)一辺の長さが$5$の正方形の個数を求めよ.
(3)すべての正方形の個数を求めよ.
(4)すべての長方形のうち正方形でないものの個数を求めよ.
(5)正方形でない長方形のうち,図の点$\mathrm{A}$を含まないものの個数を求めよ.
立教大学 私立 立教大学 2013年 第1問
次の空欄$[ア]$~$[サ]$に当てはまる数または式を記入せよ.

(1)三角形$\mathrm{ABC}$において,$\mathrm{AB}=4$,$\mathrm{AC}=3$,$\angle \mathrm{A}={60}^\circ$とする.$\angle \mathrm{A}$の二等分線と辺$\mathrm{BC}$との交点を$\mathrm{D}$とするとき,$\mathrm{AD}$の長さは$[ア]$である.
(2)$\tan {75}^\circ$の値は$[イ]$である.
(3)$5^x-5^{-x}=6$のとき,$5^x+5^{-x}=[ウ]$である.

(4)$\displaystyle \frac{1}{1+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{7}}+\cdots +\frac{1}{\sqrt{79}+\sqrt{81}}=[エ]$である.

(5)$4$次方程式$2x^4-5x^2-3=0$の解は$x=[オ],\ [カ],\ [キ],\ [ク]$である.
(6)$2$点$\mathrm{A}(-6,\ -1,\ 2)$,$\mathrm{B}(-4,\ 2,\ 7)$からの距離が等しい点$\mathrm{P}(x,\ y,\ z)$のうち,$x,\ y,\ z$がすべて正の整数となるのは$(x,\ y,\ z)=[ケ]$である.
(7)不等式$\sqrt{|x-3|}<5$を満たす$x$の範囲は,$[コ]$である.
(8)正六角形の頂点を反時計回りに$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$とする.このとき,ベクトル$\overrightarrow{\mathrm{AE}}$を$\overrightarrow{\mathrm{AB}}$,$\overrightarrow{\mathrm{BC}}$を用いて表すと$\overrightarrow{\mathrm{AE}}=[サ]$である.
千歳科学技術大学 私立 千歳科学技術大学 2013年 第3問
各辺の長さが$1$である正四面体$\mathrm{OABC}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とするとき以下の問いに答えなさい.

(1)$\triangle \mathrm{OAB}$の重心を$\mathrm{G}$とするとき,$\overrightarrow{\mathrm{OG}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表しなさい.
(2)$2$つのベクトル$\overrightarrow{\mathrm{OG}}$と$\overrightarrow{\mathrm{GC}}$の内積$\overrightarrow{\mathrm{OG}} \cdot \overrightarrow{\mathrm{GC}}$を求めなさい.
(3)$\mathrm{GC}$の長さを求めなさい.
千歳科学技術大学 私立 千歳科学技術大学 2013年 第3問
各辺の長さが$1$である正四面体$\mathrm{OABC}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とするとき以下の問いに答えなさい.

(1)$\triangle \mathrm{OAB}$の重心を$\mathrm{G}$とするとき,$\overrightarrow{\mathrm{OG}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表しなさい.
(2)$2$つのベクトル$\overrightarrow{\mathrm{OG}}$と$\overrightarrow{\mathrm{GC}}$の内積$\overrightarrow{\mathrm{OG}} \cdot \overrightarrow{\mathrm{GC}}$を求めなさい.
(3)$\mathrm{GC}$の長さを求めなさい.
日本福祉大学 私立 日本福祉大学 2013年 第2問
$\mathrm{AB}=4$,$\mathrm{BC}=3$,$\angle \mathrm{ABC}={60}^\circ$である三角形$\mathrm{ABC}$がある.

(1)$\mathrm{AC}$の長さを求めよ.
(2)$\angle \mathrm{ABC}$の二等分線上の一点を$\mathrm{D}$とし,四角形$\mathrm{ABCD}$が円に内接する場合の四角形$\mathrm{ABCD}$の面積を求めよ.
ノートルダム清心女子大学 私立 ノートルダム清心女子大学 2013年 第2問
以下の問いに答えなさい.

(1)図の直角三角形$\mathrm{ABC}$において$\mathrm{AB}=2$,$\mathrm{AC}=1$とする.また,辺$\mathrm{BC}$を二等分する点を$\mathrm{D}$とし,$\angle \mathrm{BAD}$を$\alpha$,$\angle \mathrm{DAC}$を$\beta$とする.このとき$\sin \alpha$及び$\sin \beta$の値を求めなさい.

\begin{zahyou*}[ul=1.5mm](0,42)(0,25)%
\tenretu*{A(35,23)n;B(5,5)w;C(35,5)e;D(20,5)s}%
{\thicklines
\Kakukigou\B\A\D<Hankei=12mm,moziiti=16mm>{$\alpha$}%
\Kakukigou<2>\D\A\C<Hankei=8mm,moziiti=12mm>{$\beta$}%
\Drawline{\A\B\C\A}%
\Drawline{\A\D}%
\put(33,5){\drawline(0,0)(0,2)}%
\put(33,7){\drawline(0,0)(2,0)}%
}
\tenretu*{D(36,23);E(2,3);F(36,3);G(10,5.5);H(20,2)}%
\emathPut\D{$\mathrm{A}$}
\emathPut\E{$\mathrm{B}$}
\emathPut\F{$\mathrm{C}$}
\emathPut\H{$\mathrm{D}$}
\end{zahyou*}

(2)半径$r (>0)$の円の円周の長さを$L$とし,面積を$S$とする.また,半径$r$の球の体積を$V$とする.このとき$x$についての$2$次方程式
\[ Vx^2+Sx-L=0 \]
の実数解がいくつあるか求めなさい.
(3)長さ$1$メートルの細いひもを$1$本だけ余すところなく用いて平面上に正三角形を$1$つ作ったとき,その正三角形の面積を求めなさい.また,同様にして正方形を$1$つ作ったとき,その正方形の面積を求めなさい.さらに,同様にして円を$1$つ作ったとき,その円の面積を求めなさい.ただし円周率を$\pi$とする.
ノートルダム清心女子大学 私立 ノートルダム清心女子大学 2013年 第3問
以下の問いに答えなさい.

(1)図のように半径$R (>0)$の円に内接する三角形$\mathrm{ABC}$において三辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$の長さをそれぞれ$a,\ b,\ c$とする.このとき$\triangle \mathrm{ABC}$の面積$S$を半径$R$を用いて$\displaystyle S=\frac{G}{R}$のように表したとき,$G$を各辺の長さ$a,\ b,\ c$を用いて表わしなさい.

\begin{zahyou*}[ul=2mm](-12,12)(-12,12)%
\tenretu*{O(0,0);A(5,8.6);B(-8.6,-5);C(9.5,-3)e;D(20,5)s}%
{\thicklines
\En\O{10}%
\Drawline{\A\B\C\A}%
}
\tenretu*{D(5,9.3);E(-11,-6);F(10.5,-4);G(0,-5.6);H(5.8,1);I(-3.1,2.7)}%
\emathPut\D{$\mathrm{A}$}
\emathPut\E{$\mathrm{B}$}
\emathPut\F{$\mathrm{C}$}
\emathPut\G{$a$}
\emathPut\H{$b$}
\emathPut\I{$c$}
\end{zahyou*}

(2)図のように一辺の長さが$1$の正方形$\mathrm{ABCD}$の各頂点から$x$だけ離れた各辺上に点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$がある.このとき次の設問に答えなさい.ただし,$0 \leqq x \leqq 1$とする.

\begin{zahyou*}[ul=2mm](-12,12)(-14,15)%
\tenretu*{O(0,0);A(-10,10);B(-10,-10);C(10,-10);D(10,10);P(-10,6);Q(-6,-10);R(10,-6);S(6,10)}%
{\thicklines
\Drawline{\A\B\C\D\A}%
\Drawline{\P\Q\R\S\P}%
}
\HenKo<henkoH=2mm>\A\P{}
\HenKo<henkoH=2mm>\B\Q{}
\HenKo<henkoH=2mm>\C\R{}
\HenKo<henkoH=2mm>\D\S{}
\tenretu*{A(-11,11);B(-12.5,-10);C(10,-12);D(11,10);P(-12,4.5);Q(-6,-12);R(11,-6);S(5,11)}%
\emathPut\A{$\mathrm{A}$}
\emathPut\B{$\mathrm{B}$}
\emathPut\C{$\mathrm{C}$}
\emathPut\D{$\mathrm{D}$}
\emathPut\P{$\mathrm{P}$}
\emathPut\Q{$\mathrm{Q}$}
\emathPut\R{$\mathrm{R}$}
\emathPut\S{$\mathrm{S}$}
\tenretu*{X(-12.8,7.7);Y(-8.8,-12.7);Z(11.5,-8.7);W(7.5,11.5)}%
\emathPut\X{$x$}
\emathPut\Y{$x$}
\emathPut\Z{$x$}
\emathPut\W{$x$}
\end{zahyou*}


(i) 四角形$\mathrm{PQRS}$の面積$W$を求めなさい.
(ii) $W$が最小となるときの$x$の値を求めなさい.また,そのときの$W$の値も求めなさい.
大阪市立大学 公立 大阪市立大学 2013年 第3問
$\mathrm{OA}=4$,$\mathrm{OB}=5$,$\displaystyle \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=\frac{5}{2}$である三角形$\mathrm{OAB}$に対し,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$とおく.次の問いに答えよ.

(1)辺$\mathrm{AB}$の長さを求めよ.
(2)$\angle \mathrm{AOB}$の二等分線と辺$\mathrm{AB}$の交点を$\mathrm{P}$,$\angle \mathrm{OAB}$の二等分線と辺$\mathrm{OB}$の交点を$\mathrm{Q}$とする.$\overrightarrow{\mathrm{OP}}$,$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
(3)三角形$\mathrm{OAB}$の内心を$\mathrm{I}$とする.$\overrightarrow{\mathrm{OI}}$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
大阪市立大学 公立 大阪市立大学 2013年 第3問
$a>1$を満たす定数$a$に対し,座標が$(a,\ a)$である点を$\mathrm{A}$とする.関数$\displaystyle y=\frac{1}{x} (x>0)$のグラフ上を動く点$\displaystyle \mathrm{P} \left( t,\ \frac{1}{t} \right)$をとり,$t>0$で定義された関数$f(t)$を,長さ$\mathrm{AP}$を用いて$f(t)=\mathrm{AP}^2$で定める.次の問いに答えよ.

(1)$f(t)$を$t$と$a$を用いて表せ.
(2)$f^\prime(t)=0$となる$t (t>0)$の値を求めよ.
(3)$\mathrm{AP}$が最小になるような点$\mathrm{P}$の座標と,$\mathrm{AP}$の最小値を求めよ.
スポンサーリンク

「長さ」とは・・・

 まだこのタグの説明は執筆されていません。