タグ「長さ」の検索結果

64ページ目:全1099問中631問~640問を表示)
産業医科大学 私立 産業医科大学 2013年 第1問
空欄にあてはまる適切な数,式,記号などを記入しなさい.

(1)$100$円,$50$円,$10$円の硬貨がそれぞれたくさんあるとする.ある品物を買うのに$2300$円かかるとき,このお金による支払い方の総数は$[ ]$である.
(2)整式$P(x)$を$x^2-4x+3$で割ったときの余りは$x+1$であり,$x^2-3x+2$で割ったときの余りは$3x-1$である.$P(x)$を$x^3-6x^2+11x-6$で割ったときの余りは$[ ]$である.
(3)数列の極限$\displaystyle \lim_{n \to \infty} \frac{\sum_{k=1}^{2n} (k+n)^2}{\sum_{k=1}^{2n} k^2}$の値は$[ ]$である.
(4)$\sqrt{x}+\sqrt{y}=1$で表される座標平面上の曲線を$C$とする.曲線$C$上の$x$座標が$s (0<s<1)$である点における接線を$\ell$とする.接線$\ell$と曲線$C$および$x$軸,$y$軸とで囲まれた部分を,$x$軸のまわりに$1$回転してできる回転体の体積の最小値は$[ ]$である.また,そのときの$s$の値は$[ ]$である.
(5)原点を$\mathrm{O}$とする座標平面上の$2$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(0,\ 1)$を結ぶ線分上に点$\mathrm{P}$がある.$\theta=\angle \mathrm{AOP}$とし,線分$\mathrm{OP}$の長さを$r$とするとき,$r$は$\theta$の関数として$r=f(\theta)$と表せる.このとき定積分$\displaystyle \int_0^{\frac{\pi}{2}} f(\theta) \, d\theta$の値は$[ ]$であり,$\displaystyle \int_0^{\frac{\pi}{2}} f(\theta)^2 \cos \theta \, d\theta$の値は$[ ]$である.
(6)$\mathrm{A}$が$1$枚のカードを,$\mathrm{B}$が$4$枚のカードを持っている.表が出る確率と裏が出る確率がそれぞれ$\displaystyle \frac{1}{2}$の偏りのないコインを投げて,表が出れば$\mathrm{A}$は$\mathrm{B}$からカードを$1$枚もらう.裏が出れば$\mathrm{A}$は$\mathrm{B}$にカードを$1$枚わたす.ただし,手もとにカードがなければわたさなくてよい.この試行を$4$回くり返した後,$\mathrm{A}$の手もとに残るカードの枚数の期待値は$[ ]$である.
成城大学 私立 成城大学 2013年 第2問
$\triangle \mathrm{ABC}$の面積を$S$,$\angle \mathrm{BAC}=\alpha$とし,辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$の長さをそれぞれ$a,\ b,\ c$とする.さらに,辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$を$1$辺とする正三角形の面積をそれぞれ$S_A,\ S_B,\ S_C$とする.ただし,$\alpha \neq {90}^\circ$とする.

(1)$a$を用いて$S_A$を表せ.
(2)次の等式が成り立つことを証明せよ.
\[ S_A=S_B+S_C-\frac{\sqrt{3}}{\tan \alpha}S \]
成城大学 私立 成城大学 2013年 第3問
一辺の長さが$a_1$の正方形$\mathrm{S}_1$がある.以下の図のように,$\mathrm{S}_1$の対角線を一辺とする正方形$\mathrm{S}_2$をつくり,その一辺の長さを$a_2$とする.さらに,$\mathrm{S}_2$の対角線を一辺とする正方形$\mathrm{S}_3$をつくり,その一辺の長さを$a_3$とする.

以下,$1 \leqq n \leqq 7$に対して同様にしてつくられる正方形$\mathrm{S}_n$の一辺の長さを$a_n$とし,$n$個の正方形$\mathrm{S}_1,\ \cdots,\ \mathrm{S}_n$が重なってできる多角形の面積を$A_n$とするとき,以下の問いに答えよ.ただし,正方形は点$\mathrm{O}$を中心として反時計回りに回転するものとする.

(1)$a_n$を$a_1$を用いて表せ.
(2)$A_2$および$A_3$を$a_1$を用いて表せ.
(3)$A_n$を$a_1$を用いて表せ.
(図は省略)
青山学院大学 私立 青山学院大学 2013年 第4問
$\mathrm{O}$を原点とする座標空間に,$2$点$\mathrm{A}(-1,\ 0,\ 1)$,$\mathrm{B}(a,\ b,\ 0)$がある.線分$\mathrm{OA}$上に点$\mathrm{P}$をとり,$\displaystyle t=\frac{\mathrm{OP}}{\mathrm{OA}}$とする.このとき,$0 \leqq t \leqq 1$である.

(1)点$\mathrm{P}$の座標を$t$を用いて表せ.
(2)点$\mathrm{P}$が線分$\mathrm{OA}$上を動くとき,線分$\mathrm{PB}$の長さの最小値を求めよ.
(3)$(2)$で求めた最小値が$1$となるような点$(a,\ b)$全体が作る図形を,座標平面上に図示せよ.
青山学院大学 私立 青山学院大学 2013年 第2問
$1$辺の長さが$1$の正四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$を$2:3$に内分する点を$\mathrm{L}$,辺$\mathrm{OB}$を$1:2$に内分する点を$\mathrm{M}$とし,辺$\mathrm{BC}$上に$\angle \mathrm{LMN}$が直角になるように点$\mathrm{N}$をとる.


(1)$\displaystyle \mathrm{BN}=\frac{[ク]}{[ケ][コ]}$である.

(2)$\displaystyle \cos \angle \mathrm{MNB}=\frac{\sqrt{[サ][シ]}}{[ス][セ]}$である.
早稲田大学 私立 早稲田大学 2013年 第5問
次の問に答えよ.

(1)半径$1$の球が正四面体のすべての面に接しているとき,この正四面体の$1$辺の長さは$[ナ] \sqrt{[ニ]}$である.
(2)半径$1$の球が正四面体のすべての辺に接しているとき,この正四面体の$1$辺の長さは$[ヌ] \sqrt{[ネ]}$である.
早稲田大学 私立 早稲田大学 2013年 第4問
$1$辺の長さが$1$の立方体がある.

(1)この立方体の$8$個の頂点のうちの$4$個を頂点とする正四面体の体積を求めよ.
(2)この立方体の$8$個の頂点のうちの$4$個を頂点とする正四面体と,残りの$4$個を頂点とする正四面体の共通部分の体積を求めよ.
立教大学 私立 立教大学 2013年 第3問
座標平面上に点$\mathrm{A}(2,\ 0)$,点$\mathrm{B}(0,\ 2)$があり,点$\mathrm{P}(x,\ y)$は$\overrightarrow{\mathrm{PA}} \cdot \overrightarrow{\mathrm{PB}}=0$を満たしている.このとき,次の問に答えよ.

(1)点$\mathrm{P}$の軌跡の方程式を求めよ.
(2)線分$\mathrm{PA}$の長さが$\sqrt{2}$となるとき,点$\mathrm{P}$の座標を求めよ.
(3)線分$\mathrm{AB}$の中点を$\mathrm{M}$とする.点$\mathrm{P}(x,\ y)$について$x>0$,$y=1$であるとき,$\angle \mathrm{AMP}$を求めよ.
早稲田大学 私立 早稲田大学 2013年 第3問
$1$辺の長さが$1$の正方形$\mathrm{ABCD}$において,図のように$\mathrm{AW}=\mathrm{BX}=\mathrm{CY}=\mathrm{DZ}$となる点$\mathrm{W}$,$\mathrm{X}$,$\mathrm{Y}$,$\mathrm{Z}$をとる.四角形$\mathrm{WXYZ}$に内接する円を$C_0$とし,$\triangle \mathrm{AWZ}$,$\triangle \mathrm{BXW}$,$\triangle \mathrm{CYX}$,$\triangle \mathrm{DZY}$に内接する円をそれぞれ$C_1$,$C_2$,$C_3$,$C_4$とする.$\mathrm{AW}=x$,$\mathrm{ZW}=a$とおくとき
\[ a^2=[セ]x^2+[ソ]x+1 \quad (0<x<1) \]
となる.円$C_0$,$C_1$,$C_2$,$C_3$,$C_4$の面積の総和を$S$とすると
\[ S=\frac{\pi}{4} \left( [タ]a^2+[チ]a+[ツ] \right) \]
となり,$\displaystyle a=\frac{[ト]}{[テ]}$のとき,$S$は最小値$\displaystyle \frac{\pi}{[ナ]}$をとる.
(図は省略)
早稲田大学 私立 早稲田大学 2013年 第5問
空間内に平面$P$がある.空間内の図形$A$に対し,$A$の各点から$P$に下ろした垂線と$P$との交点の全体を,$A$の$P$への正射影とよぶ.次の問に答えよ.

(1)平面$Q$が平面$P$と角$\displaystyle \theta \left( 0<\theta<\frac{\pi}{2} \right)$で交わっているとする.すなわち,$P$と$Q$の交線に垂直な平面で$P,\ Q$を切ってできる$2$直線のなす角が$\theta$であるとする.$Q$上の長さ$1$の線分の$P$への正射影の長さの最大値と最小値を求めよ.
(2)$(1)$の$Q$を考える.$Q$上の$1$辺の長さが$1$である正三角形の$P$への正射影の面積を求めよ.
(3)$1$辺の長さが$1$である正四面体$T$の$P$への正射影$T^\prime$はどんな形か.また,$T^\prime$の面積の最大値を求めよ.
スポンサーリンク

「長さ」とは・・・

 まだこのタグの説明は執筆されていません。