タグ「長さ」の検索結果

61ページ目:全1099問中601問~610問を表示)
東北医科薬科大学 私立 東北医科薬科大学 2013年 第2問
$2$直線$x \cos \theta+y \sin \theta=6$,$x \sin \theta-y \cos \theta=8$の交点を$\mathrm{P}(\theta)$とおく.このとき,次の問に答えなさい.

(1)$\displaystyle \theta=\frac{\pi}{4}$のとき点$\displaystyle \mathrm{P} \left( \frac{\pi}{4} \right)$を$\mathrm{A}$とおくと$\mathrm{A}$の座標は$([ア] \sqrt{[イ]},\ [ウ] \sqrt{[エ]})$である.
(2)点$\mathrm{P}(\theta)$の座標$(x,\ y)$を$\theta$で表すと$x=[オ] \cos \theta+[カ] \sin \theta$,$y=[キ] \sin \theta-[ク] \cos \theta$である.
(3)$\theta$が$\displaystyle \frac{\pi}{4} \leqq \theta \leqq \frac{3\pi}{4}$を動くとき,点$\mathrm{P}(\theta)$の軌跡は中心$([ケ],\ [コ])$,半径$[サシ]$の円の一部(円弧)を動き,その円弧の長さは$[ス] \pi$である.
(4)点$\displaystyle \mathrm{P} \left( \frac{3\pi}{4} \right)$を$\mathrm{B}$,点$\mathrm{P}(\theta)$を$\mathrm{P}$とおく.このときベクトル$\overrightarrow{\mathrm{PA}}$とベクトル$\overrightarrow{\mathrm{PB}}$の内積は
\[ \overrightarrow{\mathrm{PA}} \cdot \overrightarrow{\mathrm{PB}}=[セソタ]([チ]-\sqrt{[ツ]} \sin \theta) \]
である.また,$\theta$が$\displaystyle \frac{\pi}{4} \leqq \theta \leqq \frac{3\pi}{4}$を動くとき,この内積が最小となる点$\mathrm{P}$の座標は$([テ],\ [ト])$である.
東京都市大学 私立 東京都市大学 2013年 第1問
次の問に答えよ.

(1)$\displaystyle \cos \theta+\sin \theta=\frac{1}{2}$のとき,$\cos^3 \theta \sin^2 \theta+\cos^2 \theta \sin^3 \theta$を求めよ.
(2)等式$(a+i)(a+1-i)=4+bi$を満たす実数$a,\ b$を求めよ.ただし,$i$は虚数単位である.
(3)$xy$平面上の$2$点$(1,\ 2)$,$(3,\ 1)$を通る直線を$\ell$とする.直線$\ell$上を動く点$\mathrm{P}$が原点$\mathrm{O}$に最も近づくとき,線分$\mathrm{OP}$の長さを求めよ.
埼玉工業大学 私立 埼玉工業大学 2013年 第4問
一辺の長さが$1$の正四面体$\mathrm{ABCD}$がある.辺$\mathrm{BC}$の中点を$\mathrm{M}$とし,$\angle \mathrm{ADM}=\theta$としたとき,$\cos \theta$の値は$\displaystyle \frac{\sqrt{[ ]}}{[ ]}$である.頂点$\mathrm{A}$から$\mathrm{MD}$へ下ろした垂線を$\mathrm{AH}$とすると,$\mathrm{AH}$の長さは$\displaystyle \frac{\sqrt{[ ]}}{[ ]}$であり,この正四面体の体積は$\displaystyle \frac{\sqrt{[ ]}}{[][]}$である.また,この正四面体に内接する球の半径は$\displaystyle \frac{\sqrt{[ ]}}{[][]}$である.
北海道医療大学 私立 北海道医療大学 2013年 第3問
$1,\ 3,\ 5$の$3$つの数から重複を許して$3$つの数を選び,その$3$つの数を辺の長さとする三角形を作ろうとするとき,以下の問に答えよ.ただし,$3$つの数の組み合わせは$(1,\ 1,\ 3)$,$(1,\ 5,\ 5)$のように記すこと.

(1)$3$つの数を選ぶ組み合わせは何通りあるか.ただし,三角形ができない組み合わせも含むとする.
(2)正三角形ができる組み合わせを列挙せよ.
(3)正三角形ではない二等辺三角形ができる組み合わせを列挙せよ.
(4)三角形ができない組み合わせを列挙せよ.
北里大学 私立 北里大学 2013年 第3問
次の$[ ]$にあてはまる答を求めよ.

(1)$\mathrm{AB}=5$,$\mathrm{BC}=6$,$\mathrm{CA}=4$である三角形$\mathrm{ABC}$を考える.$\cos \angle \mathrm{BAC}$の値は$[ ]$であり,三角形$\mathrm{ABC}$の面積は$[ ]$である.また,三角形$\mathrm{ABC}$の外接円の半径は$[ ]$である.さらに,三角形$\mathrm{ABC}$の内接円の中心を$\mathrm{I}$とし,直線$\mathrm{AI}$と辺$\mathrm{BC}$の交点を$\mathrm{D}$とするとき,線分$\mathrm{AI}$の長さを線分$\mathrm{ID}$の長さで割った$\displaystyle \frac{\mathrm{AI}}{\mathrm{ID}}$の値は$[ ]$である.
(2)放物線$y=x^2-4x+3$を$C$とおく.点$(2,\ -5)$から$C$に引いた$2$本の接線の方程式は$y=[ ]$と$y=[ ]$である.これら$2$本の接線と$C$で囲まれた図形の面積は$[ ]$である.
愛知工業大学 私立 愛知工業大学 2013年 第1問
次の$[ ]$を適当に補え.

(1)$\displaystyle \frac{\sqrt{5}-\sqrt{2}}{\sqrt{5}+\sqrt{2}}+\frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}}=[ ]$,$\displaystyle \left( \frac{\sqrt{5}-\sqrt{2}}{\sqrt{5}+\sqrt{2}} \right)^2+\left( \frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}} \right)^2=[ ]$である.

(2)$10$本のくじの中に$2$本の当たりくじがある.このくじを$\mathrm{A}$君が$2$本引き,次に$\mathrm{B}$さんが$2$本引く.ただし,引いたくじはもとに戻さないとする.このとき,$\mathrm{A}$君が$1$本も当たらない確率は$[ ]$である.また,$\mathrm{B}$さんが少なくとも$1$本当たる確率は$[ ]$である.
(3)$1$辺の長さが$1$の正四面体$\mathrm{OABC}$において,辺$\mathrm{AB}$の中点を$\mathrm{P}$,辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{Q}$とする.このとき,$\overrightarrow{\mathrm{OP}}$と$\mathrm{OQ}$の内積は$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OQ}}=[ ]$である.また,$\triangle \mathrm{OPQ}$の面積は$[ ]$である.
(4)複素数$z=x+yi$($x,\ y$は実数,$i$は虚数単位)に対して,$|z|=\sqrt{x^2+y^2}$とする.このとき,$|z|=1$と$|z-i|=1$を同時にみたす複素数$z$は$z=[ ]$である.
(5)$\displaystyle 0<\theta<\frac{\pi}{2}$とする.$\displaystyle \frac{1}{\sin \theta}+\frac{1}{\cos \theta}=2 \sqrt{6}$のとき,$\sin \theta \cos \theta=[ ]$であり,$\theta=[ ]$である.
(6)$\displaystyle \int_0^{\frac{\pi}{4}} x \sin 3x \, dx=[ ]$
東京慈恵会医科大学 私立 東京慈恵会医科大学 2013年 第4問
$a,\ d$は$ad \neq 0$をみたす実数とする.$\mathrm{O}$を原点とする座標平面上において,行列$A=\left( \begin{array}{cc}
a & -1 \\
0 & d
\end{array} \right)$の表す$1$次変換(移動)を$f$とし,以下の$2$つの条件をみたす直線$\ell$がただ$1$つ存在するときを考える.

$(ⅰ)$ $\ell$は$\mathrm{O}$を通る.
$(ⅱ)$ $f$によって,$\ell$上の点はすべて$\ell$と垂直に交わるある直線$m$上に移される.

このとき,次の問いに答えよ.

(1)$a$と$d$の関係式を求めよ.
(2)$d>0$とする.$\ell$上に$\mathrm{O}$からの距離が$1$で$x$座標が正となる点$\mathrm{P}$をとり,$\mathrm{P}$の$f$による像を$\mathrm{Q}$とする.線分$\mathrm{OQ}$の長さを求めよ.また,直線$\mathrm{PQ}$と$y$軸が交わる点を$\mathrm{R}$とするとき,線分$\mathrm{OR}$の長さが最小となるように$a$と$d$の値を定めよ.
千葉工業大学 私立 千葉工業大学 2013年 第1問
次の各問に答えよ.

(1)$\mathrm{A}$地点から$15 \, \mathrm{km}$離れた$\mathrm{B}$地点まで行くのに,初めは時速$4 \, \mathrm{km}$で歩き,途中から時速$6 \, \mathrm{km}$で歩くことにする.$\mathrm{A}$地点を出発後,$3$時間以内に$\mathrm{B}$地点に到着するためには,時速$4 \, \mathrm{km}$で歩ける距離は最大で$[ア] \, \mathrm{km}$である.
(2)半径$2 \sqrt{6}$の円に内接する正三角形の$1$辺の長さは$[イ] \sqrt{[ウ]}$である.
(3)中心が$(-2,\ 3)$で,$y$軸に接する円の方程式は$x^2+y^2+[エ]x-[オ]y+[カ]=0$である.
(4)$3^n$の一の位の数字が$1$になる正の整数$n$の最小値は$[キ]$であり,$3^{102}$の一の位の数字は$[ク]$である.
(5)数直線上の集合$A=\{x \;|\; 2<x<9 \}$,$B=\{x \;|\; k<x<k+2 \}$(ただし,$k$は定数)において,$A \cap B$が空集合となるような$k$の値の範囲は$k \leqq [ケ]$または$[コ] \leqq k$である.
(6)白玉$3$個,赤玉$5$個の計$8$個の玉が入った箱の中から同時に$4$個の玉を取り出すとき,白玉も赤玉もともに取り出される確率は$\displaystyle \frac{[サシ]}{[スセ]}$である.
(7)方程式$\displaystyle 9^x=\frac{3}{27^x}$の解は$\displaystyle x=\frac{[ソ]}{[タ]}$である.
(8)関数$f(x)=-2x^3-6x^2+9$の極大値は$[チ]$,極小値は$[ツ]$である.
広島国際学院大学 私立 広島国際学院大学 2013年 第2問
$\mathrm{AB}:\mathrm{BC}:\mathrm{CA}=1:1:\sqrt{3}$の$\triangle \mathrm{ABC}$を考える.

(1)$\angle \mathrm{A}$を求めなさい.
(2)$\triangle \mathrm{ABC}$の面積が$\displaystyle \frac{\sqrt{3}}{2}$であるとき,辺$\mathrm{CA}$の長さを求めなさい.
東京電機大学 私立 東京電機大学 2013年 第3問
$t$を正の実数とする.座標平面上で点$\mathrm{A}(1,\ 1)$を中心とし点$\mathrm{B}(1,\ 0)$を通る円と,直線$y=tx$との$2$つの交点を$\mathrm{P}$,$\mathrm{Q}$とするとき,次の問に答えよ.

(1)点$\mathrm{A}$と直線$y=tx$との距離を$t$を用いて表せ.
(2)線分$\mathrm{PQ}$の長さを$t$を用いて表せ.
(3)$\triangle \mathrm{BPQ}$の面積$S$を$t$を用いて表せ.
(4)$(3)$の面積$S$が最大になるときの$t$の値を求めよ.
スポンサーリンク

「長さ」とは・・・

 まだこのタグの説明は執筆されていません。