タグ「長さ」の検索結果

56ページ目:全1099問中551問~560問を表示)
鹿児島大学 国立 鹿児島大学 2013年 第1問
次の各問いに答えよ.

(1)四角形$\mathrm{ABCD}$において,線分$\mathrm{AC}$と線分$\mathrm{BD}$の交点を$\mathrm{P}$とし,$\angle \mathrm{DAC}=\angle \mathrm{CBD}$,$\mathrm{AC}=8$,$\mathrm{AP}=2$,$\mathrm{PD}=4$とする.このとき$\mathrm{BD}$の長さを求めよ.
(2)平面上で$2$つの円を考える.共通接線がちょうど$3$本引けるような$2$つの円の位置関係の例を図示せよ.また,$3$本の共通接線も描け.
(3)$3$個のさいころを同時に投げるとき,$3$個の目の積が$3$の倍数である確率を求めよ.
(4)$a,\ b$を実数とする.命題「$ab=0$ならば,$a=0$かつ$b=0$」の逆と対偶を書き,それぞれの真偽を答えよ.
群馬大学 国立 群馬大学 2013年 第5問
座標平面において,原点$\mathrm{O}$を中心とする半径$1$の円周$C$上に定点$\mathrm{A}(-1,\ 0)$,$\mathrm{B}(1,\ 0)$をとる.$C$の上半円周($y$座標が正の部分)上を動く点を$\mathrm{P}$,下半円周($y$座標が負の部分)上を動く点を$\mathrm{Q}$とする.$\displaystyle \angle \mathrm{PAB}=\alpha \ \left( 0<\alpha<\frac{\pi}{2} \right)$,$\displaystyle \angle \mathrm{QAB}=\beta \ \left( 0<\beta<\frac{\pi}{2} \right)$とし,直線$\mathrm{PQ}$と$x$軸との交点を$\mathrm{R}(t,\ 0)$とする.

(1)$t$を$\alpha,\ \beta$を用いて表せ.
(2)$\displaystyle \alpha+\beta=\frac{\pi}{4}$のとき,$t$のとり得る値の範囲を求めよ.
(3)線分$\mathrm{PR}$の長さと線分$\mathrm{RQ}$の長さの比が$2:1$のとき,$t$を$\alpha$を用いて表せ.
群馬大学 国立 群馬大学 2013年 第15問
原点$\mathrm{O}$を中心とする半径$2$の円を$\mathrm{A}$とする.半径$1$の円(以下,「動円」と呼ぶ)は,円$\mathrm{A}$に外接しながら,すべることなく転がる.ただし,動円の中心は円$\mathrm{A}$の中心に関し反時計回りに動く.動円上の点$\mathrm{P}$の始めの位置を$(2,\ 0)$とする.動円の中心と原点を結ぶ線分が$x$軸の正方向となす角を$\theta$として,$\theta$を$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲で動かしたときの$\mathrm{P}$の軌跡を$C$とする.
(図は省略)

(1)$C$を媒介変数$\theta$を用いて表せ.
(2)$\mathrm{P}$の$y$座標が$\displaystyle \frac{1}{2}$のとき,$\mathrm{P}$での$C$の接線の傾きを求めよ.
(3)$C$の長さを求めよ.ただし,曲線$x=f(\theta),\ y=g(\theta) \ (\alpha \leqq \theta \leqq \beta)$の長さは \\
$\displaystyle \int_\alpha^\beta \sqrt{\left( \frac{dx}{d\theta} \right)^2+\left( \frac{dy}{d\theta} \right)^2} \, d\theta$で与えられる.
福井大学 国立 福井大学 2013年 第2問
四面体$\mathrm{OABC}$の各辺の長さをそれぞれ$\mathrm{AB}=\sqrt{7}$,$\mathrm{BC}=3$,$\mathrm{CA}=\sqrt{5}$,$\mathrm{OA}=2$,$\mathrm{OB}=\sqrt{3}$,$\mathrm{OC}=\sqrt{7}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,以下の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$,$\overrightarrow{b} \cdot \overrightarrow{c}$,$\overrightarrow{c} \cdot \overrightarrow{a}$を求めよ.
(2)三角形$\mathrm{OAB}$を含む平面を$\alpha$とし,点$\mathrm{C}$から平面$\alpha$に下ろした垂線と$\alpha$との交点を$\mathrm{H}$とする.このとき,$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(3)四面体$\mathrm{OABC}$の体積を求めよ.
福井大学 国立 福井大学 2013年 第1問
四面体$\mathrm{OABC}$の各辺の長さを$\mathrm{OA}=2$,$\mathrm{OB}=\sqrt{5}$,$\mathrm{OC}=\sqrt{7}$,$\mathrm{AB}=\sqrt{3}$,$\mathrm{BC}=2$,$\mathrm{CA}=\sqrt{5}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,以下の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$,$\overrightarrow{b} \cdot \overrightarrow{c}$,$\overrightarrow{c} \cdot \overrightarrow{a}$を求めよ.
(2)三角形$\mathrm{OAB}$を含む平面を$\alpha$とし,点$\mathrm{C}$から平面$\alpha$に下ろした垂線と$\alpha$との交点を$\mathrm{H}$とする.このとき$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表し,さらにその大きさを求めよ.
(3)四面体$\mathrm{OABC}$の体積を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2013年 第1問
一辺の長さが$1$の正十角形$D$が平面上にある.$D$の外接円を$C$とおき,$C$の中心を$\mathrm{O}$,$C$の半径を$R$とおく.$D$の頂点$\mathrm{P}_1$,$\mathrm{P}_2$,$\cdots$,$\mathrm{P}_{10}$は$C$上でこの順に反時計回りに並んでいるとする.点$\mathrm{P}_2$,$\mathrm{P}_3$から直線$\mathrm{OP}_1$へ下ろした垂線をそれぞれ$\mathrm{P}_2 \mathrm{H}_2$,$\mathrm{P}_3 \mathrm{H}_3$とする.

(1)$\displaystyle R=\frac{1}{2 \sin \theta_1}$を満たす$\theta_1 \ (0^\circ<\theta_1<90^\circ)$を求めよ.
(2)$\mathrm{P}_1 \mathrm{H}_2=\sin \theta_2$,$\mathrm{H}_2 \mathrm{H}_3=\cos \theta_3$を満たす$\theta_2,\ \theta_3 \ (0^\circ<\theta_2<90^\circ,\ 0^\circ<\theta_3<90^\circ)$を求めよ.
(3)等式$\mathrm{P}_1 \mathrm{H}_2+\mathrm{H}_2 \mathrm{H}_3+\mathrm{H}_3 \mathrm{O}=R$を用いて,$\sin 18^\circ$の値を求めよ.
(4)$D$の面積を$S$とするとき,$S^2$の値を求めよ.
宮崎大学 国立 宮崎大学 2013年 第3問
平面上に,$1$辺の長さが$1$の正三角形$\mathrm{ABC}$をとり,$\overrightarrow{a}=\overrightarrow{\mathrm{CA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{CB}}$とおく.また,直線$\mathrm{AC}$,$\mathrm{BC}$上にそれぞれ点$\mathrm{P}$,$\mathrm{Q}$を$\displaystyle \overrightarrow{\mathrm{CP}}=\frac{1}{2}\overrightarrow{a}$,$\overrightarrow{\mathrm{CQ}}=2 \overrightarrow{b}$であるようにとる.線分$\mathrm{PQ}$の中点を$\mathrm{R}$とし,直線$\mathrm{AB}$上に点$\mathrm{D}$を$\mathrm{DR} \perp \mathrm{PQ}$であるようにとる.このとき,次の各問に答えよ.

(1)$\overrightarrow{\mathrm{CR}}$を,$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{DR}}$を,$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)直線$\mathrm{DR}$と直線$\mathrm{BC}$の交点を$\mathrm{E}$とするとき,線分$\mathrm{CE}$の長さを求めよ.
愛媛大学 国立 愛媛大学 2013年 第2問
$2$つの直線$\ell_1:y=-2x+3$と$\ell_2:y=5$の交点を$\mathrm{A}$,$\ell_2$と$y$軸の交点を$\mathrm{B}$とする.

(1)点$\mathrm{A}$の座標を求めよ.
(2)$\mathrm{O}$を原点とする.$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を通る円の方程式を求めよ.
(3)(2)で求めた円を$C_1$とし,円$x^2+y^2=4$を$C_2$とする.

(i) 点$(\alpha,\ \beta)$が$C_1$と$C_2$の交点であるとき
\[ \alpha-5 \beta+4=0 \]
が成り立つことを示せ.
(ii) $C_1$と$C_2$の$2$つの交点を結ぶ線分の長さを求めよ.
岐阜大学 国立 岐阜大学 2013年 第6問
中心を点$\mathrm{O}$とする半径$1$の円に内接する正六角形$H_1$があり,その頂点を反時計回りに$\mathrm{A}_1$,$\mathrm{B}_1$,$\mathrm{C}_1$,$\mathrm{D}_1$,$\mathrm{E}_1$,$\mathrm{F}_1$とする.辺$\mathrm{A}_1 \mathrm{B}_1$上に点$\mathrm{A}_2$を$\angle \mathrm{A}_1 \mathrm{OA}_2=15^\circ$を満たすようにとり,辺$\mathrm{B}_1 \mathrm{C}_1$上に点$\mathrm{B}_2$を$\angle \mathrm{B}_1 \mathrm{OB}_2=15^\circ$を満たすようにとる.同様に,図のように辺$\mathrm{C}_1 \mathrm{D}_1$,$\mathrm{D}_1 \mathrm{E}_1$,$\mathrm{E}_1 \mathrm{F}_1$,$\mathrm{F}_1 \mathrm{A}_1$上にそれぞれ点$\mathrm{C}_2$,$\mathrm{D}_2$,$\mathrm{E}_2$,$\mathrm{F}_2$をとり,点$\mathrm{A}_2$から点$\mathrm{F}_2$を頂点とする正六角形を$H_2$とおく. \\
上の操作を再び正六角形$H_2$に対して行い,辺$\mathrm{A}_2 \mathrm{B}_2$,$\mathrm{B}_2 \mathrm{C}_2$,$\mathrm{C}_2 \mathrm{D}_2$,$\mathrm{D}_2 \mathrm{E}_2$,$\mathrm{E}_2 \mathrm{F}_2$,$\mathrm{F}_2 \mathrm{A}_2$上にそれぞれ点$\mathrm{A}_3$,$\mathrm{B}_3$,$\mathrm{C}_3$,$\mathrm{D}_3$,$\mathrm{E}_3$,$\mathrm{F}_3$をとり,これらを頂点とする正六角形を$H_3$とおく.同様に$3$以上の整数$n$に対して,上の操作を正六角形$H_n$に行うことにより得られる正六角形を$H_{n+1}$とおく.以下の問に答えよ.
(図は省略)

(1)辺$\mathrm{OA}_2$の長さを求めよ.
(2)正六角形$H_2$の面積$S_2$を求めよ.
(3)正六角形$H_n$の面積$S_n$を$n$を用いて表せ.
長崎大学 国立 長崎大学 2013年 第7問
半径$1$の円と長さ$2$の線分がある.この線分の一方の端点を,円の中心に合わせて円上に固定した図形を考える.線分の端点で,円の中心とは異なるものを$\mathrm{P}$とする.この図形を下の図$1$のように$xy$平面上に置く.すなわち,中心が点$(0,\ 1)$,$\mathrm{P}$が点$(0,\ -1)$と一致するように置く.次に,$x$軸上で正の方向に,すべらないように円を半回転させる.下の図$2$は円が$\theta$だけ回転したときの状態を表している.$0 \leqq \theta \leqq \pi$の範囲で,点$\mathrm{P}$が描く曲線$C$について考察する.次の問いに答えよ.
(図は省略)

(1)図$2$における点$\mathrm{P}$の$x$座標と$y$座標を,それぞれ$\theta$を用いて表せ.
(2)曲線$C$上にあって,$x$座標が最小となる点,最大となる点,$y$座標が最小となる点,最大となる点について,それぞれの座標を求めよ.
(3)曲線$C$と$2$直線$y=-1$および$x=\pi$によって囲まれた図形の面積$S$を求めよ.
スポンサーリンク

「長さ」とは・・・

 まだこのタグの説明は執筆されていません。