タグ「長さ」の検索結果

49ページ目:全1099問中481問~490問を表示)
成城大学 私立 成城大学 2014年 第2問
$\triangle \mathrm{ABC}$の面積を$S$,辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$の長さをそれぞれ$a,\ b,\ c$とし,$\triangle \mathrm{ABC}$の各頂点から向かい合う辺またはその延長に下ろした$3$本の垂線を$\mathrm{AD}$,$\mathrm{BE}$,$\mathrm{CF}$とする.

(1)$\mathrm{AD}$,$\mathrm{BE}$,$\mathrm{CF}$の長さを$S,\ a,\ b,\ c$を用いてそれぞれ表せ.
(2)$\mathrm{AD}$,$\mathrm{BE}$,$\mathrm{CF}$の長さの比が$1:2:3$になることはあり得ないことを証明せよ.
東洋大学 私立 東洋大学 2014年 第4問
$C_1$を半径$1$の円とする.$H_1$を円$C_1$に内接する正六角形とし,正六角形$H_1$に内接する円を$C_2$とする.次の各問に答えよ.

(1)円$C_2$の半径は$\displaystyle \frac{\sqrt{[ア]}}{[イ]}$である.
(2)円$C_2$に内接する正六角形を$H_2$とする.この操作を繰り返し,$10$個の円$C_1,\ C_2,\ \cdots,\ C_{10}$を作る.このとき,$C_1,\ C_2,\ \cdots,\ C_{10}$の円周の長さの総和は
\[ \frac{\kakkofour{ウ}{エ}{オ}{カ}+[キ][ク][ケ] \sqrt{[コ]}}{256} \pi \]
である.
(3)円$C_1$に内接する正十二角形に,円$C^\prime$が内接している.このとき,$C^\prime$の半径は$\displaystyle \frac{[サ]+\sqrt{[シ]}}{2 \sqrt{2}}$である.
北里大学 私立 北里大学 2014年 第3問
三角形$\mathrm{ABC}$において,$\mathrm{AB}=4$,$\mathrm{AC}=5$,$\angle \mathrm{BAC}={60}^\circ$である.$\angle \mathrm{BAC}$の二等分線と辺$\mathrm{BC}$との交点を$\mathrm{D}$とする.また,$\angle \mathrm{BAC}$の二等分線と三角形$\mathrm{ABC}$の外接円との交点のうち$\mathrm{A}$でないものを$\mathrm{E}$とする.以下の問に答えよ.

(1)辺$\mathrm{BC}$の長さを求めよ.
(2)三角形$\mathrm{ABC}$の外接円の半径を求めよ.
(3)三角形$\mathrm{ABC}$の外接円の,点$\mathrm{A}$を含まない弧$\mathrm{CE}$の長さを求めよ.
(4)線分$\mathrm{AD}$の長さを求めよ.
玉川大学 私立 玉川大学 2014年 第3問
三角形$\mathrm{ABC}$において,$\mathrm{AB}=1$,$\mathrm{AC}=1$,$\mathrm{BC}=l$とする.$\mathrm{AB}$,$\mathrm{AC}$上にそれぞれ点$\mathrm{P}$,$\mathrm{Q}$をとり線分$\mathrm{PQ}$が三角形$\mathrm{ABC}$の面積を二等分するように引く.次の問いに答えよ.

(1)線分$\mathrm{AP}$と$\mathrm{AQ}$の長さの積$\mathrm{AP} \cdot \mathrm{AQ}$を求めよ.
(2)$\angle \mathrm{A}$の大きさを$\alpha$とするとき,$\cos \alpha$を$l$を用いて表せ.
(3)線分$\mathrm{PQ}$の長さが最小となる線分$\mathrm{AP}$および線分$\mathrm{AQ}$の長さを求めよ.また,そのときの線分$\mathrm{PQ}$の長さを$l$で表せ.
名城大学 私立 名城大学 2014年 第2問
$\triangle \mathrm{ABC}$は$\angle \mathrm{ABC}=\theta$,$\mathrm{AB}=1$,$\mathrm{BC}=a$とする($\theta$は$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲にある定数とし,$a$は正の実数とする).また,$\triangle \mathrm{ABC}$の外接円の半径を$r$とする.次の問に答えよ.

(1)線分$\mathrm{AC}$の長さを$a$と$\theta$を用いて表せ.
(2)$r$を$a$と$\theta$を用いて表せ.
(3)$r$が最小となるとき,$a$を$\theta$を用いて表せ.また,そのときの$r$の値を求めよ.
上智大学 私立 上智大学 2014年 第2問
$xyz$空間において,$xy$平面に原点$\mathrm{O}(0,\ 0,\ 0)$で接し,中心が$\mathrm{C}(0,\ 0,\ 1)$であるような球面を$S$とする.点$\mathrm{P}(2 \sqrt{3},\ 0,\ 3)$に点光源をおくとき,$xy$平面上にできる$S$の影$S^\prime$を考える.

(1)点$\mathrm{P}$から球面$S$に引いた接線の一つと球面との接点を$\mathrm{A}$とする.線分$\mathrm{PA}$の長さは$\sqrt{[キ]}$である.$\angle \mathrm{CPA}=\theta$とすると,$\displaystyle \sin \theta=\frac{[ク]}{[ケ]}$である.

(2)球面$S$上で光が当たる部分と影の部分との境界は,$\displaystyle \left( \frac{\sqrt{[コ]}}{[サ]},\ [シ],\ \frac{[ス]}{[セ]} \right)$を中心とし,半径が$\displaystyle \frac{\sqrt{[ソ]}}{[タ]}$の円である.
(3)影$S^\prime$は長軸の長さが$[チ] \sqrt{[ツ]}$の楕円の内部である.
東京理科大学 私立 東京理科大学 2014年 第1問
放物線$y=x^2$上の$2$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2) (0 \leqq a<b)$に対して,$L(a,\ b)$を線分$\mathrm{AB}$の長さとし,$S(a,\ b)$を線分$\mathrm{AB}$と放物線$y=x^2$で囲まれた図形の面積とする.さらに,$T(a,\ b)$を$a \leqq x \leqq b$の範囲で放物線$y=x^2$と$x$軸で囲まれた図形の面積とする.

(1)$(ⅰ)$ $\displaystyle L(0,\ t)=\frac{1}{2}L(0,\ 1)$となるのは,$\displaystyle t^2=\frac{1}{[ア]}(\sqrt{[イ]}-[ウ])$となるときである.
$(ⅱ)$ $L(0,\ t)=L(t,\ 1)$となるのは,$\displaystyle t=\frac{1}{[エ]}(\sqrt{[オ]}-[カ])$のときである.
(2)$(ⅰ)$ $\displaystyle S(0,\ t)=\frac{1}{2}S(0,\ 2)$となるのは,$\displaystyle \log_2 t=\frac{[キ]}{[ク]}$となるときである.

$(ⅱ)$ $T(t,\ 2)=S(0,\ 2)$となるのは,$\displaystyle \log_2 t=\frac{[ケ]}{[コ]}$となるときである.
北里大学 私立 北里大学 2014年 第4問
辺$\mathrm{AB}$の長さが$4$,辺$\mathrm{AE}$の長さが$\sqrt{6}$の直方体$\mathrm{ABCD}$-$\mathrm{EFGH}$において,辺$\mathrm{AB}$を$1:3$に内分する点を$\mathrm{P}$,辺$\mathrm{CG}$の中点を$\mathrm{M}$,線分$\mathrm{HM}$を$2:1$に内分する点を$\mathrm{Q}$とする.線分$\mathrm{PQ}$と線分$\mathrm{PR}$の長さが等しくなるように,辺$\mathrm{CD}$上に点$\mathrm{R}$をとる.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AD}}=\overrightarrow{d}$,$\overrightarrow{\mathrm{AE}}=\overrightarrow{e}$とする.
(図は省略)

(1)$\overrightarrow{\mathrm{PQ}}$を$\overrightarrow{b}$,$\overrightarrow{d}$,$\overrightarrow{e}$を用いて表すと,$\overrightarrow{\mathrm{PQ}}=[コ] \overrightarrow{b}+[サ] \overrightarrow{d}+[シ] \overrightarrow{e}$と表される.
(2)$\overrightarrow{\mathrm{PR}}$を$\overrightarrow{b}$,$\overrightarrow{d}$を用いて表すと,$\overrightarrow{\mathrm{PR}}=[ス] \overrightarrow{b}+[セ] \overrightarrow{d}$と表される.
(3)$\triangle \mathrm{PQR}$の面積が$\sqrt{7}$であるとき,辺$\mathrm{AD}$の長さは$[ソ]$である.
松山大学 私立 松山大学 2014年 第3問
次の空所$[ア]$~$[ソ]$を埋めよ.

図のような一辺が長さ$1$の正四面体$\mathrm{ABCD}$がある.
(図は省略)

(1)$\mathrm{A}$から底面$\mathrm{BCD}$に垂線$\mathrm{AH}$を下ろすとき,$\mathrm{AH}$の長さは$\displaystyle \frac{\sqrt{[ア]}}{[イ]}$となり,正四面体$\mathrm{ABCD}$の体積は$\displaystyle \frac{\sqrt{[ウ]}}{[エオ]}$である.
(2)辺$\mathrm{AB}$上に点$\mathrm{P}$,辺$\mathrm{BC}$上に点$\mathrm{Q}$を$\mathrm{BP}=\mathrm{CQ}=x$となるようにとる.四面体$\mathrm{PBQD}$の体積は$\displaystyle x=\frac{[カ]}{[キ]}$のときに最大となり,これは正四面体$\mathrm{ABCD}$の体積の$\displaystyle \frac{[ク]}{[ケ]}$倍である.
(3)$\displaystyle x=\frac{[カ]}{[キ]}$のとき,$\angle \mathrm{DPQ}=\theta$とすると,$\displaystyle \cos \theta=\frac{\sqrt{[コ]}}{[サ]}$であり,$\triangle \mathrm{DPQ}$の面積は$\displaystyle \frac{\sqrt{[シス]}}{[セソ]}$である.
東京都市大学 私立 東京都市大学 2014年 第1問
次の問に答えよ.

(1)ベクトル$\overrightarrow{a}=(1,\ 7)$とのなす角が${60}^\circ$である長さ$\sqrt{2}$のベクトルをすべて求めよ.
(2)不等式$|x-2|>2x-1$を解け.
(3)$y=x^2$のグラフの$x=k$における接線が$y=-x^2+4x-3$のグラフに接している.このとき,$k$の値を求めよ.
スポンサーリンク

「長さ」とは・・・

 まだこのタグの説明は執筆されていません。