タグ「長さ」の検索結果

46ページ目:全1099問中451問~460問を表示)
東北医科薬科大学 私立 東北医科薬科大学 2014年 第2問
一辺の長さが$1$である正三角形を右図のように一段ずつ積み重ねていき,$k$段積み重ねた図形を$F_k$とおく.図形$F_k$に表れる一辺の長さが$n$である上向きの正三角形$\triangle$の個数を$F_k(n)$とおく(下向きの正三角形$\bigtriangledown$は考えない).例えば$F_2(1)=3$,$F_2(2)=1$である.このとき,次の問に答えなさい.
(図は省略)

(1)$F_3(1)=[ア]$,$F_3(2)=[イ]$,$F_3(3)=[ウ]$である.
(2)図形$F_k$に表れる一辺の長さが$1$である上向きの正三角形の個数は
\[ F_k(1)=\frac{[エ]([エ]+[オ])}{[カ]} \]
である.
(3)図形$F_k$に表れる一辺の長さが$n$である上向きの正三角形の個数は
\[ F_k(n)=\frac{([キ]-n+[ク])([ケ]-n+[コ])}{[サ]} \]
である.ただし,$[ク]<[コ]$となるように表しなさい.
(4)図形$F_k$に表れる上向きの正三角形の個数は全部で
\[ \frac{[シ] ([ス]+[セ])([ソ]+[タ])}{[チ]} \]
である.ただし$[セ]<[タ]$となるように表しなさい.
東北医科薬科大学 私立 東北医科薬科大学 2014年 第3問
三角形$\mathrm{OAB}$において線分$\mathrm{OA}$を$2:5$に内分する点を$\mathrm{C}$,線分$\mathrm{OB}$を$1:3$に内分する点を$\mathrm{D}$とおく.このとき,次の問に答えなさい.

(1)$\displaystyle \overrightarrow{\mathrm{CD}}=\frac{[アイ]}{[ウ]} \overrightarrow{\mathrm{OA}}+\frac{[エ]}{[オ]} \overrightarrow{\mathrm{OB}}$である.
(2)線分$\mathrm{CD}$を$2:1$に内分する点を$\mathrm{E}$とおくと$\overrightarrow{\mathrm{OE}}=\frac{[カ]}{[キク]} \overrightarrow{\mathrm{OA}}+\frac{[ケ]}{[コ]} \overrightarrow{\mathrm{OB}}$である.
(3)三角形$\mathrm{OAB}$は$3$辺の長さの比が$\mathrm{OA}:\mathrm{OB}:\mathrm{AB}=5:4:7$で,外接円の半径が$\displaystyle \frac{35 \sqrt{6}}{12}$とする.このとき$\displaystyle \cos \angle \mathrm{AOB}=\frac{[サシ]}{[ス]}$であり,また三角形$\mathrm{OAB}$の面積は$[セソ] \sqrt{[タ]}$である.
(4)$\alpha,\ \beta$は実数で,点$\mathrm{P}$,$\mathrm{Q}$は$\overrightarrow{\mathrm{OP}}=\alpha \overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OQ}}=\beta \overrightarrow{\mathrm{OB}}$を満たす点とする.$3$点$\mathrm{P}$,$\mathrm{E}$,$\mathrm{Q}$が同一直線上にあり,$\overrightarrow{\mathrm{PD}}$と$\overrightarrow{\mathrm{CQ}}$が平行である.ただし点$\mathrm{P}$は点$\mathrm{C}$と異なるとするとき$\displaystyle \alpha=\frac{[チ]}{[ツ]}$,$\displaystyle \beta=\frac{[テ]}{[ト]}$である.
獨協大学 私立 獨協大学 2014年 第1問
次の設問の空欄を,あてはまる数値や記号,式などで埋めなさい.

(1)$2$次関数$y=x^2-6x+7$のグラフは$y=x^2+2x+2$のグラフを,$x$軸方向に$[$1$]$,$y$軸方向に$[$2$]$だけ平行移動したものである.
(2)次の式の分母を有理化せよ.
\[ (ⅰ) \frac{\sqrt{3}}{2-\sqrt{3}}=[$3$] \qquad (ⅱ) \frac{5 \sqrt{6}+\sqrt{2}}{\sqrt{6}+\sqrt{2}}=[$4$] \]
(3)$2$点$\mathrm{A}(-1,\ 2)$,$\mathrm{B}(5,\ 2)$を結ぶ線分$\mathrm{AB}$を$2:1$に内分する点$\mathrm{C}([$5$],\ [$6$])$を通り,線分$\mathrm{AB}$に垂直な直線の方程式は$[$7$]$と表される.
(4)数列$\{a_n\}$が$2,\ 3,\ 7,\ 14,\ 24,\ \cdots$のように与えられている.その階差数列を$\{b_n\}$とする.このとき,$b_1=[$8$]$,$b_2=[$9$]$であり,数列$\{b_n\}$の一般項は$b_n=[$10$]$と表される.よって,数列$\{a_n\}$の一般項は$a_n=[$11$]$となる.
(5)$x+y=20$,$x>0$,$y>0$であるとき,$\log_{\frac{1}{10}}x+\log_{\frac{1}{10}}y$の最小値は$[$12$]$である.
(6)各辺の長さが$\mathrm{AB}=1$,$\mathrm{BC}=2$,$\mathrm{CA}=k$である$\triangle \mathrm{ABC}$の面積は,$k=[$13$]$のとき最大値$[$14$]$をとる.
(7)$2$つのベクトル$\overrightarrow{x}=(a,\ b)$,$\overrightarrow{y}=(1,\ c)$について,$\overrightarrow{x} \perp \overrightarrow{y}$,$|\overrightarrow{x}-\overrightarrow{y}|=2$,$abc=-1$を満たす実数$a,\ b,\ c$の組合せは$[$15$]$通り存在する.また,このうち$a+b+c$の最小値は$[$16$]$となる.
(8)$2$人の男性$\mathrm{A}$,$\mathrm{B}$と$2$人の女性$\mathrm{a}$,$\mathrm{b}$がいる.この$4$人は無作為に異性を$1$人ずつ選ぶ.このとき,男性が選んだ女性がその男性を選べば,その男女をペアとする.たとえば,男性$\mathrm{A}$が女性$\mathrm{a}$を選び,女性$\mathrm{a}$も男性$\mathrm{A}$を選べば,その男女はペアとなる.このとき,ペアが全くできない確率は$[$17$]$,ペアがちょうど$1$組だけできる確率は$[$18$]$,ペアが$2$組できる確率は$[$19$]$である.
中京大学 私立 中京大学 2014年 第3問
方程式$x^4-6x^2-4y^2+8y+5=0$で表される曲線$C$について,次の各問に答えよ.

(1)曲線$C$の概形をかけ.
(2)曲線$C$で囲まれる部分の周囲の長さを求めよ.なお,曲線$y=f(x) (a \leqq x \leqq b)$の長さは次の積分で求められることを使ってよい.
\[ \int_a^b \sqrt{1+\{f^\prime(x)\}^2} \, dx \]
藤田保健衛生大学 私立 藤田保健衛生大学 2014年 第2問
三角形$\mathrm{ABC}$において$\displaystyle \angle \mathrm{ABC}=\frac{\pi}{2}$,$\mathrm{AB}=c$,$\mathrm{CA}=b$,$\angle \mathrm{ACB}=\theta$とする.また辺$\mathrm{BC}$の延長上に点$\mathrm{D}$を$\mathrm{CD}=b$となるようにとり,$\angle \mathrm{ADB}=\alpha$とする.

(1)この$b,\ c$に対して$x+y=2b^2$,$xy=b^4-b^2c^2$を満足する$x,\ y$で$x>y$となるものを求めると,$(x,\ y)=[$5$]$である.
(2)線分$\mathrm{AD}$の長さの平方は$[$6$]$である.従って$\sin \alpha$の値を二重根号を用いずに,$b,\ c$で表せば$[$7$]$となり,さらにこれを$\sin \theta$で表せば$[$8$]$となる.
大阪薬科大学 私立 大阪薬科大学 2014年 第1問
次の問いに答えなさい.

(1)底面の半径が$2$で高さが$h$の円錐の体積と,半径$3$の球の体積が等しいとき,$h=[$\mathrm{A]$}$である.
(2)$2$次方程式$x^2+5x+5=0$の$2$つの解を$\alpha,\ \beta$とする.このとき,$\displaystyle \frac{1}{\alpha}+\frac{1}{\beta}$の値は$[$\mathrm{B]$}$である.
(3)成功する確率が$\displaystyle \frac{1}{2}$の実験を$5$回繰り返すとき,$5$回目の実験がちょうど$3$度目の成功となる確率は$[$\mathrm{C]$}$である.ただし,どの実験の結果も他の実験の結果に影響を及ぼさないとする.
(4)$1$辺の長さが$6$の正四面体$\mathrm{ABCD}$において,辺$\mathrm{BC}$を$1:5$に内分する点を$\mathrm{P}$とするとき,$\cos \angle \mathrm{APD}=[$\mathrm{D]$}$である.
(5)$\theta$が$0 \leqq \theta \leqq 2\pi$の範囲を動くとき,関数
\[ f(\theta)=(1+2 \cos \theta)(3-\cos 2\theta) \]
の最大値と最小値を求めなさい.
南山大学 私立 南山大学 2014年 第1問
$[ ]$の中に答を入れよ.

(1)行列$A=\left( \begin{array}{cc}
a & 2b \\
-b & a
\end{array} \right)$の表す$1$次変換によって,点$(3,\ 1)$が点$(7,\ -5)$に移され,点$(p,\ q)$が点$(4,\ 1)$に移される.$a$と$b$の値を求めると$(a,\ b)=[ア]$であり,$p$と$q$の値を求めると$(p,\ q)=[イ]$である.
(2)$3$辺の長さがそれぞれ$\displaystyle 1,\ x,\ 2-x \left( \frac{1}{2}<x<\frac{3}{2} \right)$の三角形がある.この三角形の面積$S$を$x$で表すと$S=[ウ]$であり,$\displaystyle S \geqq \frac{\sqrt{2}}{4}$となる$x$の値の範囲を求めると$[エ]$である.
(3)$2$つの数列$\{a_n\}$と$\{b_n\}$は,

$a_n=2n-1 \quad (n=1,\ 2,\ 3,\ \cdots)$
$b_1=2, (n+1)b_{n+1}=a_{n+1}+nb_n \quad (n=1,\ 2,\ 3,\ \cdots)$

を満たす.$\displaystyle \sum_{k=1}^n a_k$を求めると,$\displaystyle \sum_{k=1}^n a_k=[オ]$である.$\{b_n\}$の一般項を求めると,$b_n=[カ]$である.
(4)$0 \leqq \theta<2\pi$のとき,$y=1-2 \sin \theta-\cos 2\theta$の最大値を求めると,$y=[キ]$であり,$z=\sin^2 \theta+\sqrt{3} \sin \theta \cos \theta+2 \cos^2 \theta$の最大値を求めると,$z=[ク]$である.
(5)$3$つのサイコロを同時に投げるとき,出た目の和が$4$以下である確率は$[ケ]$であり,出た目の和が奇数であるか$5$以上である確率は$[コ]$である.
学習院大学 私立 学習院大学 2014年 第2問
三角形$\mathrm{ABC}$において,辺$\mathrm{BC}$,$\mathrm{AC}$,$\mathrm{AB}$の長さをそれぞれ$a,\ b,\ c$とし,$\angle \mathrm{A}$,$\angle \mathrm{B}$,$\angle \mathrm{C}$の大きさをそれぞれ$A,\ B,\ C$とする.このとき,$3$つの条件
\[ (a+b+c)(a-b+c)=3ac,\quad \sin A \sin C=\frac{1+\sqrt{3}}{4},\quad A \leqq C \]
が成り立っているとする.

(1)$\cos B$を求めよ.
(2)$A,\ B,\ C$を求めよ.
日本女子大学 私立 日本女子大学 2014年 第1問
$1$辺の長さが$1$の正三角形$\mathrm{ABC}$に,図のように正方形$S_1$,$S_2$,$S_3$,$\cdots$を順に内接させるものとする.
(図は省略)

(1)正方形$S_1$の$1$辺の長さを求めよ.
(2)$n$番目の正方形$S_n$の面積$s_n$を求めよ.
(3)これらの正方形の面積の総和
\[ s=s_1+s_2+\cdots+s_n+\cdots \]
を求めよ.
大阪薬科大学 私立 大阪薬科大学 2014年 第3問
次の問いに答えなさい.

辺$\mathrm{AB}$の長さが$1$の$\triangle \mathrm{OAB}$について,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$で表す.$n$を自然数とする.辺$\mathrm{AB}$の中点を$\mathrm{M}$とし,線分$\mathrm{AM}$の中点を$\mathrm{X}_1$,線分$\mathrm{AX}_1$の中点を$\mathrm{X}_2$,$\cdots$,線分$\mathrm{AX}_n$の中点を$\mathrm{X}_{n+1}$,$\cdots$とする.また,$\triangle \mathrm{OAX}_1$の重心を$\mathrm{P}_1$,$\triangle \mathrm{OAX}_2$の重心を$\mathrm{P}_2$,$\cdots$,$\triangle \mathrm{OAX}_n$の重心を$\mathrm{P}_n$,$\cdots$とする.同様に線分$\mathrm{BM}$の中点を$\mathrm{Y}_1$,線分$\mathrm{BY}_1$の中点を$\mathrm{Y}_2$,$\cdots$,線分$\mathrm{BY}_n$の中点を$\mathrm{Y}_{n+1}$,$\cdots$とし,$\triangle \mathrm{OBY}_1$の重心を$\mathrm{Q}_1$,$\triangle \mathrm{OBY}_2$の重心を$\mathrm{Q}_2$,$\cdots$,$\triangle \mathrm{OBY}_n$の重心を$\mathrm{Q}_n$,$\cdots$とする.

(1)$\overrightarrow{\mathrm{OX}_1}$と$\overrightarrow{\mathrm{P}_1 \mathrm{Q}_1}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表すと,$\overrightarrow{\mathrm{OX}_1}=[$\mathrm{I]$}$,$\overrightarrow{\mathrm{P}_1 \mathrm{Q}_1}=[$\mathrm{J]$}$である.
(2)線分$\mathrm{AX}_n$の長さを$n$を用いて表すと,$\mathrm{AX}_n=[$\mathrm{K]$}$である.
(3)$\overrightarrow{\mathrm{P}_n \mathrm{Q}_n}$は$n,\ \overrightarrow{a},\ \overrightarrow{b}$を用いてどのように表されるかを求めなさい.
(4)線分$\mathrm{P}_n \mathrm{Q}_n$の長さに関する不等式
\[ 0.666666<\mathrm{P}_n \mathrm{Q}_n \]
を満たす最小の自然数$n$は$[$\mathrm{L]$}$である.ただし,$\log_{2}10=3.3219$とする.
スポンサーリンク

「長さ」とは・・・

 まだこのタグの説明は執筆されていません。