タグ「長さ」の検索結果

42ページ目:全1099問中411問~420問を表示)
福井大学 国立 福井大学 2014年 第1問
三角形$\mathrm{OAB}$は$\mathrm{OA}=\mathrm{OB}=1$を満たす二等辺三角形とする.$t$を$\displaystyle \frac{1}{2}<t<1$を満たす定数とし,辺$\mathrm{AB}$を$1:t$に内分する点を$\mathrm{M}$,$\angle \mathrm{AOM}$の二等分線と辺$\mathrm{AB}$の交点を$\mathrm{N}$とする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$と表すとき,以下の問いに答えよ.

(1)$\mathrm{OM}=s$とおく.$\overrightarrow{\mathrm{ON}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$s$,$t$を用いて表せ.
(2)$\mathrm{AN}=\mathrm{BM}$のとき,内積$\overrightarrow{a} \cdot \overrightarrow{b}$を$t$を用いて表せ.
(3)$\cos \angle \mathrm{BOM}=x$とおく.$(2)$の仮定のもとで,さらに$x^2+\overrightarrow{a} \cdot \overrightarrow{b}=0$が成り立っているとき,辺$\mathrm{AB}$の長さを求めよ.
浜松医科大学 国立 浜松医科大学 2014年 第1問
$p$を正の実数として,放物線$C:y^2=4px$を定める.$C$の頂点を$\mathrm{O}$,焦点を$\mathrm{F}$,準線を$\ell:x=-p$とする.$C$上の$2$点$\mathrm{A}(a,\ 2 \sqrt{pa}) (a>0)$と$\mathrm{B}(b,\ -2 \sqrt{pb}) (b>0)$を考えるとき,以下の問いに答えよ.

(1)$\mathrm{A}$における$C$の接線を$\ell (\mathrm{A})$とし,$\ell(\mathrm{A})$と準線$\ell$との交点を$\mathrm{P}$とする.$\ell(\mathrm{A})$の方程式をかいて,$\mathrm{P}$の座標を求めよ.また,線分$\mathrm{AP}$の長さは線分$\mathrm{AF}$の長さより大きいことを示せ.
(2)接線$\ell(\mathrm{A})$が直線$\mathrm{AB}$と$\mathrm{A}$において直交するとき,$b$を$a,\ p$を用いて表せ.また$a$が$0<a<\infty$の範囲内を動くとき,$b$の最小値を求めよ.

以下$(2)$の最小値を実現する$C$上の$2$点を$\mathrm{A}_0$,$\mathrm{B}_0$とし,接線$\ell(\mathrm{A}_0)$と準線$\ell$の交点を$\mathrm{P}_0$とする.

(3)直線$\mathrm{OA}_0$と直線$\mathrm{P}_0 \mathrm{B}_0$は$\mathrm{O}$において直交することを示せ.
(4)$\triangle \mathrm{A}_0 \mathrm{OB}_0$の面積を$S$,線分$\mathrm{A}_0 \mathrm{B}_0$と$C$で囲まれた図形の面積を$T$とするとき,比$S:T$を求めよ.
山口大学 国立 山口大学 2014年 第3問
四面体$\mathrm{ABCD}$において,
\[ \mathrm{AB}=\mathrm{AC}=\mathrm{AD}=1,\quad \mathrm{BC}=\sqrt{3},\quad \angle \mathrm{BDC}=\theta \]
のとき,次の問いに答えなさい.ただし,$\displaystyle \frac{\pi}{3}<\theta<\frac{\pi}{2}$とする.

(1)点$\mathrm{A}$から$\triangle \mathrm{BCD}$を含む平面に垂線を下ろし,その平面との交点を$\mathrm{H}$とする.線分$\mathrm{AH}$,$\mathrm{BH}$,$\mathrm{CH}$,$\mathrm{DH}$の長さを,それぞれ$\theta$を用いて表しなさい.
(2)$t=\cos \theta$とする.$\theta$を一定の値に保ったまま点$\mathrm{D}$が動くときの四面体$\mathrm{ABCD}$の体積の最大値を,$t$を用いて表しなさい.
(3)$(2)$で求めた四面体$\mathrm{ABCD}$の体積の最大値を$V(t)$とする.$\displaystyle \frac{\pi}{3}<\theta<\frac{\pi}{2}$の範囲で$\theta$が動くときの$V(t)$の最大値を求めなさい.ただし,$V(t)$が最大値をとるときの$\theta$の値は求めなくてよい.
鳥取大学 国立 鳥取大学 2014年 第4問
$a,\ b$を正の実数とする.$xy$平面内の楕円$\displaystyle C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$上の点$\mathrm{P}$における$C$の接線を$\ell$とする.$\mathrm{P}$を媒介変数表示により$\mathrm{P}(a \cos t,\ b \sin t) (0 \leqq t<2\pi)$とするとき,次の問いに答えよ.

(1)直線$\ell$の方程式を求めよ.
(2)$t$が$\displaystyle 0<t<\frac{\pi}{2}$の範囲にあるとき,直線$\ell$に直交し,楕円$C$上の点$\mathrm{Q}(a \cos \theta,\ b \sin \theta)$ $(0<\theta<\pi)$で$C$に接する直線を$m$とする.接点$\mathrm{Q}$の座標を$a,\ b,\ t$を用いて表し,直線$m$の方程式を求めよ.
(3)$t$が$\displaystyle 0<t<\frac{\pi}{2}$の範囲にあるとき,直線$\ell$と$(2)$で求めた直線$m$との交点を$\mathrm{R}$とする.線分$\mathrm{OR}$の長さを求めよ.ただし$\mathrm{O}$は原点とする.
東京農工大学 国立 東京農工大学 2014年 第2問
$a,\ b$を実数とする.行列$A=\left( \begin{array}{cc}
4 & 3 \\
a & b
\end{array} \right)$,$B=\left( \begin{array}{cc}
a & b \\
b & -a
\end{array} \right)$が
\[ AB=\left( \begin{array}{cc}
10 & 5 \\
5 & 0
\end{array} \right) \]
を満たしている.次の問いに答えよ.

(1)$a,\ b$の値を求めよ.ただし答えのみでよい.
(2)$m,\ n$は実数で,$m \neq 0$,$n \neq 0$とする.座標平面上の$2$点$\mathrm{S}_1(m,\ 0)$,$\mathrm{S}_2(0,\ n)$をとり,行列$A$が表す$1$次変換によって$S_1$,$S_2$が移る点をそれぞれ${\mathrm{S}_1}^\prime$,${\mathrm{S}_2}^\prime$とする.$2$点${\mathrm{S}_1}^\prime$,${\mathrm{S}_2}^\prime$を通る直線が$2$点$\mathrm{S}_1$,$\mathrm{S}_2$を通る直線に一致するとき,$n$を$m$の式で表せ.
(3)$2$点$\mathrm{T}_1(-7,\ 0)$,$\mathrm{T}_2(0,\ 7)$を通る直線を$\ell$とする.行列$B$が表す$1$次変換によって$\mathrm{T}_1$,$\mathrm{T}_2$が移る点をそれぞれ${\mathrm{T}_1}^\prime$,${\mathrm{T}_2}^\prime$とし,$2$点${\mathrm{T}_1}^\prime$,${\mathrm{T}_2}^\prime$を通る直線を$\ell^\prime$とする.原点を中心とする半径$r$の円を$C$とする.$C$と$\ell$が異なる$2$点で交わり,かつ$C$と$\ell^\prime$も異なる$2$点で交わるとする.このような$r$の値の範囲を求めよ.
(4)$(3)$において,円$C$が$\ell$を切り取る線分の長さを$L$とし,円$C$が$\ell^\prime$を切り取る線分の長さを$L^\prime$とする.このような$L,\ L^\prime$の中で,$L$が最も小さい自然数になるときの$L^\prime$の値を求めよ.
愛媛大学 国立 愛媛大学 2014年 第1問
次の問いに答えよ.

(1)$\mathrm{AB}=1$,$\angle \mathrm{A}={90}^\circ$を満たす直角二等辺三角形$\mathrm{ABC}$において,辺$\mathrm{AB}$の中点を$\mathrm{P}$,辺$\mathrm{AC}$を$2:1$に内分する点を$\mathrm{Q}$,線分$\mathrm{CP}$と線分$\mathrm{BQ}$の交点を$\mathrm{R}$とする.このとき,線分$\mathrm{AR}$の長さを求めよ.
(2)$\displaystyle \left( \frac{1}{3} \right)^{26}$を小数で表すと,小数第何位に初めて$0$でない数字が現れるか.ただし,必要ならば$\log_{10}3=0.4771$として計算せよ.
(3)$k$を実数とし,不等式$x^2-2x-3>0$,$x^2-(k+1)x+k>0$を満たす実数$x$の集合をそれぞれ$A,\ B$とする.このとき,$A \subset B$であるための必要十分条件を$k$を用いて表せ.
東京学芸大学 国立 東京学芸大学 2014年 第2問
平面上に異なる$3$点$\mathrm{A}(\overrightarrow{a})$,$\mathrm{B}(\overrightarrow{b})$,$\mathrm{C}(\overrightarrow{c})$がある.線分$\mathrm{AB}$,$\mathrm{BC}$を$m:n$に内分する点をそれぞれ$\mathrm{P}(\overrightarrow{p})$,$\mathrm{Q}(\overrightarrow{q})$とする.さらに線分$\mathrm{PQ}$を$m:n$に内分する点を$\mathrm{R}(\overrightarrow{r})$とする.$\displaystyle t=\frac{m}{m+n} (0<t<1)$とするとき,下の問いに答えよ.

(1)$\overrightarrow{r}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$および$t$を用いて表せ.
(2)$1$辺の長さが$1$の正三角形$\mathrm{ABC}$の頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に対し,上のように点$\mathrm{R}$をとる.直線$\mathrm{AC}$に対して点$\mathrm{B}$と対称な位置にある点を$\mathrm{O}$とする.点$\mathrm{R}$は,点$\mathrm{O}$を中心とし半径$\mathrm{OA}$の円の外部にあることを示せ.
愛媛大学 国立 愛媛大学 2014年 第1問
$n$を$0$以上の整数とする.点$\mathrm{P}$,$\mathrm{Q}$は,$1$辺の長さが$1$である正四面体$\mathrm{ABCD}$の頂点の上を,以下の条件$(\mathrm{a})$,$(\mathrm{b})$を満たしながら移動する.

\mon[$(\mathrm{a})$] 時刻$t=0$において,点$\mathrm{P}$は頂点$\mathrm{A}$に,点$\mathrm{Q}$は頂点$\mathrm{B}$にいる.
\mon[($\mathrm{b})$] 時刻$t=n+1$において,点$\mathrm{P}$と点$\mathrm{Q}$は各々,時刻$t=n$のときにいた頂点から,他の$3$つの頂点のいずれかに,それぞれ$\displaystyle \frac{1}{3}$の確率で移動する.

時刻$t=n$における点$\mathrm{P}$と点$\mathrm{Q}$の間の距離を$d_n$とおく.$d_n$の値は$0$または$1$である.時刻$t=n$において$d_n=1$となる確率を$p_n$とする.

(1)時刻$t=1$とする.

(i) 点$\mathrm{P}$が頂点$\mathrm{C}$にいるとき,$d_1=1$となる点$\mathrm{Q}$の位置は何通りか.
(ii) 点$\mathrm{P}$が頂点$\mathrm{B}$にいるとき,$d_1=1$となる点$\mathrm{Q}$の位置は何通りか.

(2)$p_1$を求めよ.
(3)$d_1+d_2=1$となる確率を求めよ.
(4)$p_{n+1}$を$p_n$で表し,$p_n$を求めよ.
愛媛大学 国立 愛媛大学 2014年 第4問
$n$を$0$以上の整数とする.点$\mathrm{P}$,$\mathrm{Q}$は,$1$辺の長さが$1$である正四面体$\mathrm{ABCD}$の頂点の上を,以下の条件$(\mathrm{a})$,$(\mathrm{b})$を満たしながら移動する.

\mon[$(\mathrm{a})$] 時刻$t=0$において,点$\mathrm{P}$は頂点$\mathrm{A}$に,点$\mathrm{Q}$は頂点$\mathrm{B}$にいる.
\mon[($\mathrm{b})$] 時刻$t=n+1$において,点$\mathrm{P}$と点$\mathrm{Q}$は各々,時刻$t=n$のときにいた頂点から,他の$3$つの頂点のいずれかに,それぞれ$\displaystyle \frac{1}{3}$の確率で移動する.

時刻$t=n$における点$\mathrm{P}$と点$\mathrm{Q}$の間の距離を$d_n$とおく.$d_n$の値は$0$または$1$である.時刻$t=n$において$d_n=1$となる確率を$p_n$とする.

(1)時刻$t=1$とする.

(i) 点$\mathrm{P}$が頂点$\mathrm{C}$にいるとき,$d_1=1$となる点$\mathrm{Q}$の位置は何通りか.
(ii) 点$\mathrm{P}$が頂点$\mathrm{B}$にいるとき,$d_1=1$となる点$\mathrm{Q}$の位置は何通りか.

(2)$p_1$を求めよ.
(3)$d_1+d_2=1$となる確率を求めよ.
(4)$p_{n+1}$を$p_n$で表し,$p_n$を求めよ.
愛媛大学 国立 愛媛大学 2014年 第1問
$n$を$0$以上の整数とする.点$\mathrm{P}$,$\mathrm{Q}$は,$1$辺の長さが$1$である正四面体$\mathrm{ABCD}$の頂点の上を,以下の条件$(\mathrm{a})$,$(\mathrm{b})$を満たしながら移動する.

\mon[$(\mathrm{a})$] 時刻$t=0$において,点$\mathrm{P}$は頂点$\mathrm{A}$に,点$\mathrm{Q}$は頂点$\mathrm{B}$にいる.
\mon[($\mathrm{b})$] 時刻$t=n+1$において,点$\mathrm{P}$と点$\mathrm{Q}$は各々,時刻$t=n$のときにいた頂点から,他の$3$つの頂点のいずれかに,それぞれ$\displaystyle \frac{1}{3}$の確率で移動する.

時刻$t=n$における点$\mathrm{P}$と点$\mathrm{Q}$の間の距離を$d_n$とおく.$d_n$の値は$0$または$1$である.時刻$t=n$において$d_n=1$となる確率を$p_n$とする.

(1)時刻$t=1$とする.

(i) 点$\mathrm{P}$が頂点$\mathrm{C}$にいるとき,$d_1=1$となる点$\mathrm{Q}$の位置は何通りか.
(ii) 点$\mathrm{P}$が頂点$\mathrm{B}$にいるとき,$d_1=1$となる点$\mathrm{Q}$の位置は何通りか.

(2)$p_1$を求めよ.
(3)$d_1+d_2=1$となる確率を求めよ.
(4)$p_{n+1}$を$p_n$で表し,$p_n$を求めよ.
スポンサーリンク

「長さ」とは・・・

 まだこのタグの説明は執筆されていません。