タグ「長さ」の検索結果

4ページ目:全1099問中31問~40問を表示)
福島大学 国立 福島大学 2016年 第3問
次の問いに答えなさい.

(1)次の極限を求めなさい.
\[ \lim_{n \to \infty} (\sqrt{(n+1)(n+3)}-\sqrt{n(n+2)}) \]
(2)複素数平面上の$2$点$\alpha=4-2i,\ \beta=3-3i$に対して,次の問いに答えなさい.

(i) 点$\alpha$を点$\beta$の周りに${30}^\circ$回転した点を表す複素数$\gamma$を求めなさい.
(ii) $\beta^6$の値を求めなさい.

(3)三角形$\mathrm{ABC}$があり$\mathrm{AB}=5$,$\mathrm{AC}=3$,$\displaystyle \cos \angle \mathrm{BAC}=\frac{1}{3}$とする.点$\mathrm{A}$から辺$\mathrm{BC}$へ下ろした垂線と辺$\mathrm{BC}$の交点を$\mathrm{H}$とする.

(i) ベクトル$\overrightarrow{\mathrm{AH}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$を用いて表しなさい.
(ii) 線分$\mathrm{AH}$の長さを求めなさい.
千葉大学 国立 千葉大学 2016年 第4問
$-\sqrt{2} \leqq x \leqq \sqrt{2}$の範囲で,点$\mathrm{P}$は放物線$y=-x^2+2$上を動き,点$\mathrm{Q}$は放物線$y=x^2-2$上を動く.ただし,$\mathrm{P}$と$\mathrm{Q}$は異なる点とする.

(1)直線$\mathrm{PQ}$が原点を通るとき,線分$\mathrm{PQ}$の長さの最大値と最小値を求めよ.
(2)線分$\mathrm{PQ}$の長さの最大値を求めよ.
千葉大学 国立 千葉大学 2016年 第3問
$-\sqrt{2} \leqq x \leqq \sqrt{2}$の範囲で,点$\mathrm{P}$は放物線$y=-x^2+2$上を動き,点$\mathrm{Q}$は放物線$y=x^2-2$上を動く.ただし,$\mathrm{P}$と$\mathrm{Q}$は異なる点とする.

(1)直線$\mathrm{PQ}$が原点を通るとき,線分$\mathrm{PQ}$の長さの最大値と最小値を求めよ.
(2)線分$\mathrm{PQ}$の長さの最大値を求めよ.
小樽商科大学 国立 小樽商科大学 2016年 第2問
各辺の長さが$1$の正四面体$\mathrm{OABC}$を考える.辺$\mathrm{OA}$を$2:1$に内分する点を$\mathrm{D}$,辺$\mathrm{BC}$を$2:1$に内分する点を$\mathrm{E}$とする.このとき,線分$\mathrm{DE}$の長さを求めよ.
熊本大学 国立 熊本大学 2016年 第1問
下図のように,$\triangle \mathrm{ABC}$の外部に$3$点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$を$\triangle \mathrm{ABD}$,$\triangle \mathrm{BCE}$,$\triangle \mathrm{CAF}$がそれぞれ正三角形になるようにとる.$\triangle \mathrm{ABC}$の面積を$S$,$3$辺の長さを$\mathrm{BC}=a$,$\mathrm{CA}=b$,$\mathrm{AB}=c$とおくとき,以下の問いに答えよ.
(図は省略)

(1)$\angle \mathrm{BAC}=\theta$とおくとき,$\sin \theta$を$b,\ c,\ S$を用いて,$\cos \theta$を$a,\ b,\ c$を用いて表せ.
(2)$\mathrm{DC}^2$を$a,\ b,\ c,\ S$を用いて表し,$\mathrm{DC}^2=\mathrm{EA}^2=\mathrm{FB}^2$が成り立つことを示せ.
(3)$3$つの正三角形の面積の平均を$T$とおくとき,$\mathrm{DC}^2$を$S$と$T$を用いて表せ.
千葉大学 国立 千葉大学 2016年 第3問
座標平面上に$5$点$\mathrm{A}(0,\ 0)$,$\mathrm{B}(0,\ 1)$,$\mathrm{C}(1,\ 1)$,$\mathrm{D}(1,\ 0)$,$\displaystyle \mathrm{E} \left( 0,\ \frac{2}{3} \right)$がある.点$\mathrm{E}$と点$\mathrm{P}_1(s,\ 1) (0<s<1)$を通る直線を$\ell_1$とする.直線$y=1$に関して$\ell_1$と対称な直線を$\ell_2$とし,$\ell_2$と直線$x=1$の交点を$\mathrm{P}_2$とする.さらに,直線$x=1$に関して$\ell_2$と対称な直線$\ell_3$は$x$軸と線分$\mathrm{AD}$上で交わるとし,その交点を$\mathrm{P}_3$とする.

(1)直線$\ell_2$が点$\mathrm{D}$を通るときの$s$の値を求めよ.
(2)線分$\mathrm{DP}_3$の長さを$s$を用いて表せ.
(3)$\mathrm{EP}_1+\mathrm{P}_1 \mathrm{P}_2+\mathrm{P}_2 \mathrm{P}_3$の最大値と最小値を求めよ.
千葉大学 国立 千葉大学 2016年 第2問
座標平面上に$5$点$\mathrm{A}(0,\ 0)$,$\mathrm{B}(0,\ 1)$,$\mathrm{C}(1,\ 1)$,$\mathrm{D}(1,\ 0)$,$\displaystyle \mathrm{E} \left( 0,\ \frac{2}{3} \right)$がある.点$\mathrm{E}$と点$\mathrm{P}_1(s,\ 1) (0<s<1)$を通る直線を$\ell_1$とする.直線$y=1$に関して$\ell_1$と対称な直線を$\ell_2$とし,$\ell_2$と直線$x=1$の交点を$\mathrm{P}_2$とする.さらに,直線$x=1$に関して$\ell_2$と対称な直線$\ell_3$は$x$軸と線分$\mathrm{AD}$上で交わるとし,その交点を$\mathrm{P}_3$とする.

(1)直線$\ell_2$が点$\mathrm{D}$を通るときの$s$の値を求めよ.
(2)線分$\mathrm{DP}_3$の長さを$s$を用いて表せ.
(3)$\mathrm{EP}_1+\mathrm{P}_1 \mathrm{P}_2+\mathrm{P}_2 \mathrm{P}_3$の最大値と最小値を求めよ.
千葉大学 国立 千葉大学 2016年 第3問
座標平面上にすべての内角が${180}^\circ$未満の四角形$\mathrm{ABCD}$がある.原点を$\mathrm{O}$とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とおく.$k$は$0 \leqq k \leqq 1$を満たす定数とする.$0$以上の実数$s,\ t,\ u$が$k+s+t+u=1$を満たしながら変わるとき
\[ \overrightarrow{\mathrm{OP}}=k \overrightarrow{a}+s \overrightarrow{b}+t \overrightarrow{c}+u \overrightarrow{d} \]
で定められる点$\mathrm{P}$の存在範囲を$E(k)$とする.

(1)$E(1)$および$E(0)$を求めよ.

(2)$\displaystyle E \left( \frac{1}{3} \right)$を求めよ.

(3)対角線$\mathrm{AC}$,$\mathrm{BD}$の交点を$\mathrm{M}$とする.どの$\displaystyle E(k) \left( \frac{1}{3} \leqq k \leqq \frac{1}{2} \right)$にも属するような点$\mathrm{P}$を考える.このような点$\mathrm{P}$が存在するための必要十分条件を,線分$\mathrm{AC}$,$\mathrm{AM}$の長さを用いて答えよ.
千葉大学 国立 千葉大学 2016年 第2問
座標平面上に$5$点$\mathrm{A}(0,\ 0)$,$\mathrm{B}(0,\ 1)$,$\mathrm{C}(1,\ 1)$,$\mathrm{D}(1,\ 0)$,$\displaystyle \mathrm{E} \left( 0,\ \frac{2}{3} \right)$がある.点$\mathrm{E}$と点$\mathrm{P}_1(s,\ 1) (0<s<1)$を通る直線を$\ell_1$とする.直線$y=1$に関して$\ell_1$と対称な直線を$\ell_2$とし,$\ell_2$と直線$x=1$の交点を$\mathrm{P}_2$とする.さらに,直線$x=1$に関して$\ell_2$と対称な直線$\ell_3$は$x$軸と線分$\mathrm{AD}$上で交わるとし,その交点を$\mathrm{P}_3$とする.

(1)直線$\ell_2$が点$\mathrm{D}$を通るときの$s$の値を求めよ.
(2)線分$\mathrm{DP}_3$の長さを$s$を用いて表せ.
(3)$\mathrm{EP}_1+\mathrm{P}_1 \mathrm{P}_2+\mathrm{P}_2 \mathrm{P}_3$の最大値と最小値を求めよ.
千葉大学 国立 千葉大学 2016年 第4問
座標平面上にすべての内角が${180}^\circ$未満の四角形$\mathrm{ABCD}$がある.原点を$\mathrm{O}$とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とおく.$k$は$0 \leqq k \leqq 1$を満たす定数とする.$0$以上の実数$s,\ t,\ u$が$k+s+t+u=1$を満たしながら変わるとき
\[ \overrightarrow{\mathrm{OP}}=k \overrightarrow{a}+s \overrightarrow{b}+t \overrightarrow{c}+u \overrightarrow{d} \]
で定められる点$\mathrm{P}$の存在範囲を$E(k)$とする.

(1)$E(1)$および$E(0)$を求めよ.

(2)$\displaystyle E \left( \frac{1}{3} \right)$を求めよ.

(3)対角線$\mathrm{AC}$,$\mathrm{BD}$の交点を$\mathrm{M}$とする.どの$\displaystyle E(k) \left( \frac{1}{3} \leqq k \leqq \frac{1}{2} \right)$にも属するような点$\mathrm{P}$を考える.このような点$\mathrm{P}$が存在するための必要十分条件を,線分$\mathrm{AC}$,$\mathrm{AM}$の長さを用いて答えよ.
スポンサーリンク

「長さ」とは・・・

 まだこのタグの説明は執筆されていません。