タグ「長さ」の検索結果

38ページ目:全1099問中371問~380問を表示)
岩手大学 国立 岩手大学 2014年 第1問
次の問いに答えよ.

(1)次の不等式を解け.ただし,$a$は定数で,$a>0$,$a \neq 1$を満たすものとする.
\[ a^{2x}-a^x-6<0 \]
(2)三角形$\mathrm{ABC}$において,$\mathrm{AB}=2$,$\mathrm{AC}=5$,$\angle \mathrm{A}={60}^\circ$とする.$\angle \mathrm{A}$の二等分線と辺$\mathrm{BC}$との交点を$\mathrm{P}$とするとき,$\mathrm{BP}$の長さを求めよ.
(3)赤玉$4$個と白玉$5$個が入った袋がある.無作為に玉を$2$個同時に取り出したとき,赤玉の出る個数の期待値を求めよ.
岩手大学 国立 岩手大学 2014年 第2問
一辺の長さが$a$である正四面体の体積が$\displaystyle \frac{2 \sqrt{2}}{3}$のとき,次の問いに答えよ.

(1)底面の面積を$a$で表せ.
(2)正四面体の高さを$a$で表せ.
(3)$a$の値を求めよ.
名古屋工業大学 国立 名古屋工業大学 2014年 第4問
座標空間に立方体$K$があり,原点$\mathrm{O}$と$3$点$\mathrm{A}(a,\ b,\ 0)$,$\mathrm{B}(r,\ s,\ t)$,$\mathrm{C}(3,\ 0,\ 0)$が次の条件をみたしている.

(i) $\mathrm{OA}$,$\mathrm{AB}$,$\mathrm{BC}$は立方体$K$の辺である.
(ii) $\mathrm{OC}$は立方体$K$の辺ではない.
(iii) $b>0,\ t>0$

このとき,以下の問いに答えよ.

(1)立方体$K$の一辺の長さ$l$を求めよ.
(2)点$\mathrm{A}$の座標を求めよ.
(3)点$\mathrm{B}$の座標を求めよ.
(4)辺$\mathrm{AB}$上の点$\mathrm{P}$から$x$軸に下ろした垂線の足を$\mathrm{H}(x,\ 0,\ 0)$とする.$\mathrm{PH}$の長さを$x$を用いて表せ.
(5)立方体$K$を$x$軸を回転軸として$1$回転させて得られる回転体の体積$V$を求めよ.
岩手大学 国立 岩手大学 2014年 第3問
鋭角三角形$\mathrm{ABC}$の重心を$\mathrm{G}$とする.また,$\overrightarrow{\mathrm{GA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{GB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{GC}}=\overrightarrow{c}$とおくとき

$2 \overrightarrow{a} \cdot \overrightarrow{b}+\overrightarrow{b} \cdot \overrightarrow{c}+\overrightarrow{c} \cdot \overrightarrow{a}=-9$

$\overrightarrow{a} \cdot \overrightarrow{b}-\overrightarrow{b} \cdot \overrightarrow{c}+2 \overrightarrow{c} \cdot \overrightarrow{a}=-3$

を満たしているものとする.このとき,次の問いに答えよ.

(1)$\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}=\overrightarrow{\mathrm{0}}$を示せ.

(2)ベクトル$\overrightarrow{a},\ \overrightarrow{b}$の大きさ$|\overrightarrow{a}|$,$|\overrightarrow{b}|$を求めよ.

(3)$\overrightarrow{a} \cdot \overrightarrow{b}=-2$のとき,$\triangle \mathrm{ABC}$の$3$辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$の長さを求めよ.
岩手大学 国立 岩手大学 2014年 第3問
鋭角三角形$\mathrm{ABC}$の重心を$\mathrm{G}$とする.また,$\overrightarrow{\mathrm{GA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{GB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{GC}}=\overrightarrow{c}$とおくとき

$2 \overrightarrow{a} \cdot \overrightarrow{b}+\overrightarrow{b} \cdot \overrightarrow{c}+\overrightarrow{c} \cdot \overrightarrow{a}=-9$

$\overrightarrow{a} \cdot \overrightarrow{b}-\overrightarrow{b} \cdot \overrightarrow{c}+2 \overrightarrow{c} \cdot \overrightarrow{a}=-3$

を満たしているものとする.このとき,次の問いに答えよ.

(1)$\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}=\overrightarrow{\mathrm{0}}$を示せ.

(2)ベクトル$\overrightarrow{a},\ \overrightarrow{b}$の大きさ$|\overrightarrow{a}|$,$|\overrightarrow{b}|$を求めよ.

(3)$\overrightarrow{a} \cdot \overrightarrow{b}=-2$のとき,$\triangle \mathrm{ABC}$の$3$辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$の長さを求めよ.
宮崎大学 国立 宮崎大学 2014年 第3問
下図の平行六面体において,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$,$\overrightarrow{d}=\overrightarrow{\mathrm{OD}}$とし,$\triangle \mathrm{ACD}$と線分$\mathrm{OF}$の交点を$\mathrm{H}$とする.さらに,四面体$\mathrm{OACD}$が$1$辺の長さ$1$の正四面体であるとする.このとき,次の各問に答えよ.
(図は省略)

(1)$\triangle \mathrm{ACD}$の重心が点$\mathrm{H}$に一致することを示し,$2$つの線分$\mathrm{OH}$と$\mathrm{HF}$の比$\mathrm{OH}:\mathrm{HF}$を求めよ.
(2)内積$\overrightarrow{\mathrm{HE}} \cdot \overrightarrow{\mathrm{HF}}$の値を求めよ.
(3)$\triangle \mathrm{HEF}$の面積を求めよ.
九州工業大学 国立 九州工業大学 2014年 第1問
空間において$1$点$\mathrm{O}$を固定し,$\mathrm{O}$に関する位置ベクトルが$\overrightarrow{p}$である点$\mathrm{P}$を$\mathrm{P}(\overrightarrow{p})$で表す.$4$点$\mathrm{O}$,$\mathrm{A}(\overrightarrow{a})$,$\mathrm{B}(\overrightarrow{b})$,$\mathrm{C}(\overrightarrow{c})$を頂点とする四面体$\mathrm{OABC}$において,線分$\mathrm{OA}$,$\mathrm{OB}$,$\mathrm{BC}$を$s:1-s (0<s<1)$に内分する点をそれぞれ$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$とする.また,$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の定める平面を$\alpha$とし,$\displaystyle \overrightarrow{h}=\overrightarrow{a}-\frac{9}{16} \overrightarrow{b}+\frac{9}{16} \overrightarrow{c}$を位置ベクトルとする平面$\alpha$上の点を$\mathrm{H}(\overrightarrow{h})$とする.$\mathrm{OA}=\mathrm{AB}=3$,$\mathrm{OB}=3 \sqrt{2}$,$\mathrm{OC}=\mathrm{BC}=4$,$\mathrm{AC}=5$として,次に答えよ.

(1)ベクトル$\overrightarrow{\mathrm{DE}}$,$\overrightarrow{\mathrm{DF}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$および$s$を用いて表せ.また,内積$\overrightarrow{b} \cdot \overrightarrow{c}$を求めよ.
(2)線分$\mathrm{OH}$の長さを求めよ.
(3)$3$点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$の定める平面が点$\mathrm{H}$を通るときの$s$の値を求めよ.
(4)$s$を$(3)$で求めた値とするとき,四面体$\mathrm{OAFC}$の体積$V$を求めよ.
弘前大学 国立 弘前大学 2014年 第2問
$1$辺の長さが$1$の正四面体$\mathrm{ABCD}$に対し,辺$\mathrm{AB}$の中点を$\mathrm{E}$,辺$\mathrm{AC}$の中点を$\mathrm{F}$,辺$\mathrm{BD}$を$t:(1-t)$の比に内分する点を$\mathrm{G}$,辺$\mathrm{CD}$を$u:(1-u)$の比に内分する点を$\mathrm{H}$とする.ただし,$0<t<1$,$0<u<1$とする.次の問いに答えよ.

(1)$4$点$\mathrm{E}$,$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$が同一平面上にあるならば,$t=u$が成り立つことを示せ.
(2)$t=u$のとき,$\mathrm{EF}^2+\mathrm{FH}^2+\mathrm{HG}^2+\mathrm{GE}^2$の値の範囲を求めよ.
福島大学 国立 福島大学 2014年 第3問
座標平面上に$3$点$\mathrm{A}(-6,\ 0)$,$\mathrm{B}(0,\ -8)$,$\mathrm{C}(15,\ 28)$がある.このとき,次の問いに答えなさい.

(1)直線$\mathrm{AB}$,$\mathrm{AC}$の方程式をそれぞれ求めなさい.
(2)三角形$\mathrm{ABC}$の面積を求めなさい.
(3)線分$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$の長さをそれぞれ求めなさい.
(4)三角形$\mathrm{ABC}$の内接円の半径を求めなさい.
(5)三角形$\mathrm{ABC}$の内接円の中心の座標を求めなさい.
(6)$\angle \mathrm{ABC}$の二等分線の方程式を求めなさい.
奈良女子大学 国立 奈良女子大学 2014年 第4問
$1$辺の長さが$1$の正四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$を$x:(1-x)$に内分する点を$\mathrm{P}$,辺$\mathrm{OB}$の中点を$\mathrm{M}$とする.以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{CM}}$を$\overrightarrow{\mathrm{OB}}$と$\overrightarrow{\mathrm{OC}}$を用いて表せ.
(2)直線$\mathrm{CM}$上に,$\overrightarrow{\mathrm{CQ}}=y \overrightarrow{\mathrm{CM}}$となる点$\mathrm{Q}$をとる.$\overrightarrow{\mathrm{PQ}}$と$\overrightarrow{\mathrm{CM}}$が垂直であるとき,$y$を$x$を用いて表せ.
(3)$x$が$0<x<1$の範囲を動くとき,三角形$\mathrm{CMP}$の面積の最小値を求めよ.
スポンサーリンク

「長さ」とは・・・

 まだこのタグの説明は執筆されていません。